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Abstract

We develop a Gaussian discrete time essentially a�ne term structure model which
allows for long memory. This feature reconciles the strong persistence observed in
nominal yields and inflation with the theoretical implications of a�ne models, especially
for long maturities. We characterise the dynamic and cross-sectional implications, in
particular in terms of volatility, of long memory for our model. We explain how long
memory can naturally arise within the term structure of interest rates, providing a
theoretical underpinning for our model. Despite the infinite-dimensional structure
that long memory implies, we show how to cast the model in state space and estimate
it by maximum likelihood. We present an empirical example where we estimate a
two-factor version of the model whereby the unobserved factors have a clear economic
interpretation as the real short rate and expected inflation.

⇤Golinski: University of York, Department of Economics and Related Studies, Heslington, York, YO10
5DD, UK. E-mail: adam.golinski@york.ac.uk.
Za↵aroni: Imperial College Business School, Imperial College London, South Kensington Campus, London,
SW7 2AZ, UK. E-mail: p.zaffaroni@imperial.ac.uk.

1



1. Introduction

Modelling the term structure of interest rates is a relevant from many di↵erent perspec-
tives, both academic and practical. For instance, central bankers would be interested in
extracting inflation expectations and future movements of short rates embedded in nomi-
nal yields. From a macroeconomics angle, deriving the term structure of real interest rates
allows to measure the cost of investment and its implication for economic growth. From a
finance perspective, it is crucial to price accurately nominal and inflation-indexed bonds and
to quantify the associated term premia.

The main challenge is that nominal observed yields are extremely persistent, in fact hardly
distinguishable from a nonstationary series. A routine test would hardly reject the hypothesis
of a unit root. Although explicitly assumed in early work of term structure modelling (see
Dothan (1978)), accepting the possibility of a unit root in the physical measure appears
troublesome in terms of its economics implications and econometric estimation. In fact,
the unit root paradigm rules out any degree of mean-reversion, namely the possibility that
shocks are eventually absorbed as time goes by. Lack of mean-reversion bears implausible
cross-sectional predictions, in particular in terms of the volatility term structure of yields,
forward rates and holding period returns. In terms of estimation, the possibility of a unit
root a↵ects the finite sample as well as the asymptotic properties of conventional estimators
of term structure models, making inference more di�cult. Recognising that the notion
of long memory permits to obtain a substantial degree of persistence, in fact even non
stationarity, together with dynamic mean-reversion, this paper develops a class of discrete
time no-arbitrage a�ne term structure models with long memory state variables. The idea
of long memory has been postulated as a suitable description of nominal yields by Backus
and Zin (1993), which can be seen as a very special case of our general theory1.

Our long memory model belongs to the class of essentially a�ne (in the sense of Constan-
tinides (1992), Du↵ee (2002) and Dai and Singleton (2002)) Gaussian term structure model
with multiple factors. We establish the closed-form solution of the model and, relying on its
state space representation, show how to carry out estimation by maxi- mum likelihood and
Kalman filtering of the latent state variables. These achievements are non trivial because
a critical feature of long memory models is to be non-Markov implying, in our a�ne term
structure context, infinite-dimensional state variables.

Our approach shares the many virtues of the powerful class of a�ne models, formally
defined by Du�e and Kan (1996) and pioneered by Vasicek (1977) and Cox et al (1985)
highly influential models. First, closed-form solution for bond prices and yields can be
easily obtained as a�ne functions of a set of state variables. Second, nominal yields can be
decomposed into inflation expectations, real yields and inflation risk premia with minimal,
no-arbitrage, assumptions. Third, conditional moments, in particular term premia, can be
easily computed. Fourth, the model can be naturally cast in state-space implying that
parameters estimation and inference can be obtained by maximum likelihood estimation.
Filtered values of the latent state variables, which typically include expected inflation and
the short-term real interest rate, follow by the Kalman recursion.

1Related work is also Comte and Renault (1996) who analyse a continuous time long memory model and
the equilibrium approach of Duan and Jacobs (1996) where long memory enters through the volatility of the
state variables.
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To better understand the analogies, and di↵erences, of our model with the conventional
a�ne models, it is useful to consider the unified framework represented by the class DAQ

M(N)
of discrete-time a�ne models spelled out by Le et al (2010)2, where M of the N factors (here
0  M  N) drive stochastic volatility. Gaussian a�ne models, whereby the unconditional
distribution of the state vectors is normal, featureM = 0 (no stochastic volatility) and makes
the DAQ

0 (N) class. A crucial feature of the DAQ
0 (N) class is that the N state variables form

a Markov system, possibly of higher yet finite order, under the risk-neutral (hereafter Q)
measure, such as a vector autoregression (hereafter VAR). It is well known that the Markov
property, together with stationarity under the physical measure, implies a weak form of
temporal dependence for model-implied yields, as expressed by the fast decay toward zero
of their autocorrelation function. At the same time, a stationary VAR under the Q measure
implies that the theoretical volatility, both conditional and unconditional, of long yields and
forward rates diminishes fast toward zero as maturity increases. Instead, the model-implied
volatility of holding period returns stays bounded for large maturities. These features are
completely at odds with the empirical evidence. However, if one relaxes the assumption of
stationarity under the Q measure, within this DAQ

0 (N) class, a unit or even an explosive
root emerges the consequences of which are also at odds with the empirical evidence: as
discussed above, the theoretical (conditional) volatility of yields and forward rates is either
flat (in the unit root case) or explosive across maturity whereas it will always increase sharply
for returns.

In contrast, due to the long memory specification of our model, we are able to match the
strong degree of persistence together with the dynamic mean-reversion observed in nominal
yields. When looking at the characteristics across maturity, our model- driven term structure
of volatility for yields and forward rates can be slowly decaying for intermediate maturities
yet flattening out or even (slowly) increasing for long maturities. At the same time, the
model-driven volatility term structure will diverge for returns. These implications are now
compatible with stationarity. More importantly, these are the features observed in the data.
As we shall see, long memory can be obtained by allowing the number of state variables, N ,
to become infinite, spanning the DAQ

0 (1) class of term structure models, with respect to the
Le et al (2010) notation. Besides infinite-dimensionality of the state variables, a suitable long
lags characterization of the state variables impulse response is required in order to induce
long memory.

Obviously these various issues raised by the persistence in nominal bond data have at-
tracted a great deal of interest and di↵erent approaches have been developed. These are
reviewed in Appendix C, where we discuss their analogies with our long memory framework.

Although our theory is completely general, we then present a model that includes re-
alised inflation within the set of observables, and thus expected inflation as one of the state
variables. This makes our model akin to terms structure models that merge yields and
macroeconomic data, such as the DAQ

0 (N)-type models of Ang and Piazzesi (2003), Rude-
bush and Wu (2008) and Hordhalh et al (2008) among others. Including inflation is instru-
mental for recovering the canonical decomposition of nominal yields into the term structure

2This class nests all the exact discrete-time representation of the general class of continuous-time models
of Dai and Singleton (2000). Under the physical measure this class of models might feature nonlinearity but
are characterised by a closed-form expression of the exact likelihood.

3



of real yields, inflation expectation and inflation risk premia3. It is also asked for by the
data. In fact long memory appears to be a robust description of realised inflation dynamics.
Altissimo et al (2009) analyse how the consumer price index (hereafter CPI) construction
protocol gives rise naturally to long memory in CPI inflation and provide empirical evidence
for the inflation rate of the euro area. As a consequence, inflation appears to be one of the
main channels that naturally leads to long memory in observed nominal yields, as argued
below.

Since Rogers (1997), it is well known that assuming long memory for a tradable asset
might lead to existence of arbitrage opportunities. This would undermine the possibility to
identify the pricing kernel and thus, in our case, to determine model-implied (bond) prices.
However, it is now understood that the conditions required to violate no-arbitrage are much
more stringent in a discrete time setting (see Cheridito (2003)) such as ours. Moreover,
arbitrage opportunities are ruled out whenever transaction costs, no matter how minimal,
are allowed for, ensuring existence and uniqueness of the pricing kernel (see Guasoni et al
(2010)). Therefore, as discussed below, in practice no pricing consequence for our model
appears to arise despite its long memory feature.

The paper proceeds as follows. Section 2 describes the data for nominal yields and
inflation used for estimation of the model. We highlight some features of the yields data,
namely their dynamic persistence and the shape of their volatility term structure, especially
for long maturities. Section 3 explores the extent to which these features can be accounted for
by Vasicek-type model, spelling out the theoretical implication for long term yields, forward
rates and returns. This paves the ground for the model presented in Section 4: a discrete time
essentially a�ne non-Markov Gaussian term structure model with long memory. With no
loss of generality, we focus on the case of two latent factors and establish closed-form solution
of the model for a general parameterization of the state variables dynamics, in terms of the
nominal and real term structures. Section 4.4. provides analytical characterization of the
time series and cross-sectional properties, in terms of volatility term structure, for model-
implied yields, forward rates and holding period returns, under various forms of the market
prices of risk. Section 5 discusses theoretical underpinnings of long memory in real and
nominal yields, leaving some formal details to Appendix A. Estimation results are described
in Section 6 which presents an empirical example. A technical description of the Kalman filter
and an approximate maximum likelihood estimator for long memory processes is relegated
to Appendix D. Having estimated a simple two-factor version of the long memory model, we
verify in Section 6.2 that the above described features of the empirical distribution of zero
coupon bonds are extremely well matched by the model. The estimated two-factor model is
rich enough to decompose nominal yields into the real interest rate, inflation expectation and
the inflation risk premia term structures, as exemplified in Section 6.3. Some indications on
the statistical performance of the estimated long memory model are examined in Section 6.4
where we presents some out-of-sample forecasting performance results, comparing our a�ne
long memory model with well-established models such as Ang and Piazzesi (2003) macro

3Alternative methods for recovering the real term structure and inflation expectation uses inflation-
indexed bonds (see Barr and Campbell (1997) and Evans (1998) among others), Treasury inflation-protected
securities (see D’Amico et al (2008) and Christensen et al (2010) and among others), survey forecasts of
inflation (see Pennacchi (1991) and Chernov and Mueller (2012) among others) and inflation-based derivatives
(see Haubrich et al (2012) and Kitsul and Wright (2012)).
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model, Ang et al (2008) regime switching model and Diebold and Li (2006) cross-sectional
model. Final remarks make Section 7. Appendix A explains how long memory can be
induced within the class of a�ne term structure models. Appendix B discusses the pricing
implications of long memory for our model. A review of the di↵erent approaches to tackle
the high persistence of observed nominal yields, and their analogies with our long memory
approach, are discussed in Appendix C. Particular emphasis is given to regime switching
term structure models. Appendix E contains two technical lemmas and the proofs of the
main theorems.

2. Some stylised facts of nominal bonds and inflation

We now highlight the strong, well established, degree of dynamic persistence that charac-
terises certain specific aspects of the empirical distribution of nominal bonds and consumer
price index (CPI) inflation. Regarding nominal bonds, we consider the term structure of
nominal yields, forward rates and holding period returns. Noticeably, we wish to empha-
sise how the extremely strong degree of time series persistence appears to influence certain
cross-sectional aspects of the yields distribution, namely the term structure of volatility, of
nominal yields, forward rates and returns. In particular, this strong persistence appears to
be the main channel through which the negligible volatility of bond returns at very short
maturities becomes magnified by several orders of magnitude as we move along the term
structure. Similarly, the riskiness of long term yields and forward rates appear only slowly
declining along the term structure, far from vanishing for very long maturities. At first
glance, these stylised facts can be qualitatively rationalised by means of a simple Markov
term structure model, as exemplified in Section 3. However, anticipating matters, when
looking more carefully, both the time series and the cross-sectional evidence appear at odd
with the quantitative predictions of such term structure model built around both stationary
and non-stationary Markov state variables.

2.1. Nominal bonds

This section uses a data set comprised of monthly observations of nominal yields r$n,t on
zero coupon bonds with maturities n equal to 1 and 3 month, 1, 3, 5, 10, 15, 20� and 30 year.
The source for the 1 and 3 month yields is the Fama’s Treasury bills term structure files,
while for maturities up to 5 year are the Fama-Bliss discount bond files. The 10 to 30 year
yields are extracted from the data of Gurkaynak et al (2007) corresponding to the period
January 1986 to December 2011. Yields

r$n
i
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t,

are continuously compounded, annualised and percent, where Pn
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and holding period returns

y$n
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$
n
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i

�n
i�1

) � ni�1r
$
n
i�1

,t)/(ni � ni�1) with maturities ni�1 < ni,

referring to them as f $
n
i

,t and y$n
i

,t when ni+1 � ni = 1. Summary statistics are presented in
Table 1.

[Insert Table 1 near here]

Average yields are increasing with maturity whereas their volatility, expressed in terms
of standard deviation, shows a hump at about one year maturity and then flattens out.
A similar pattern is obtained in terms of forward rates, the main di↵erence being that
for forwards their volatility term structure raises sharply again for long maturitities after
declining from the one-year hump. Holding period returns exhibit a monotonically increasing
volatility curve.

It has been known for a long time that nominal yields display a substantial degree of
persistence4. This is evident when performing unit root tests, as illustrated Table 2 where
we present the results for the standard Augmented Dickey-Fuller (ADF) unit root test.

[Insert Table 2 near here]

The null hypothesis of unit root is not rejected for nominal yields across all maturities.
However, the unit root paradigm rules out mean-reversion, which appears implausible from
an empirical and theoretical viewpoint. Moreover, as exemplified below, unit root dynamics
raises implausible cross-sectional predictions within a�ne term structure models.

We propose to assess the persistence of nominal bonds characteristics using a somewhat
more sophisticated approach that does not su↵er the limits of the unit root framework. In
particular, we need to use a measure that allows to disentangle the notion of nonstationarity
from the one of mean-reversion.

Figure 1(a) plots the periodogram ordinates near the zero frequency for yields, forwards
and returns, averaged across maturity5 where for a sample of generic observables (w1, ...wT )
the periodogram is

Iw(�) =
1

2⇡T

�����

TX

t=1

wte
ı�t

�����

2

, �⇡ < �  ⇡,

where ı defines the complex unit. Data have been standardised so that the sample variance
is unity.

[Insert Figure 1 near here]

The strengths of using the periodogram come essentially from the fact that it is a non-
parametric measure and a function of the entire strings of sample autocorrelation of the
data. More in general, it gives neat insights on both the low, medium and high frequency
dynamics of the data, which in turn are linked to the long run persistence, mean-reversion,

4See for example Ball and Torous (1996) and Kim and Orphanides (2012) among many others.
5The same pattern is observed for the single maturities with little variation.
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and cycles of the data. For instance, the periodogram near zero frequency is proportional to
the sum of the entire set of sample autocorrelations corresponding to a given sample and,
as such, is a clearcut measure of long run persistence6. Instead, the local behaviour of the
periodogram, as one moves away from the zero frequency, provides indications on the degree
of mean-reversion.

Given the substantial mass of the periodogram of the data near zero frequency, it could
be more insightful to examine the log periodogram where large values of the periodogram are
mitigated. Figure 1(b) clearly shows that yields, forwards and returns all display a negatively
sloped log-periodogram near the origin, for at least the first twenty or thirty frequencies.

To provide a benchmark, any stationary autoregressive moving average (ARMA) process
implies a zero-sloped logarithm of the spectral density near the zero frequency. We plot the
spectral density for AR(1) model with unit variance with autoregressive parameter equal to
0.80, 0.98, 0.99999, represented by the the blue, red and green line, respectively, in Figure 2(a)
together with the periodogram of yields, forward rates and returns. Figure 2(b) reports the
same quantities in the logarithmic scale.

[Insert Figure 2 near here]

The comparison is striking: even a value as large as 0.98 does not induce a su�ciently
large degree of persistence able to match the peak found in the periodogram of the data near
the zero frequency. The mean-reversion implied by stationary ARMA is also too strong.
The case of autoregressive parameter equal to 0.99999 appears more akin to the data at
zero frequency. However, for this case it would be hard to deny the existence of a unit root.
Moreover, although dense near zero, the behaviour of the log-spectrum with an autoregressive
parameter of 0.99999 does not match too well the other higher frequencies, in particular the
slow, hyperbolic, decay of the log periodogram of the data as the frequency increases. We
interpret this as the limit of the unit root paradigm, able to induce persistence but at the
cost of giving up stationarity and, in particular, mean-reversion. This provides implausible
predictions for the volatility cross-section of nominal bond characteristics across maturities.

We summarize this finding as follows.

Stylized Fact 1. Nominal yields, forwards and holding period returns are highly persistent
across time yet mean reverting. In particular they all display a negatively sloped log peri-
odogram near the origin, slowly decaying as the frequency increases.

Figure 3(a) displays the term structure of the sample standard deviation of yields and
forward rates. As observed in Table 1, for yields, the curve is decaying yet with a hump
at about two year maturity, flattening for longer maturities around a level well above zero.
Forward rates have a similar pattern, although they show a more substantial increase toward
the end of the term structure, clearly non vanishing with maturity.

[Insert Figure 3 near here]

6The periodogram can be rewritten as I
w

(�) = (1/2⇡)
P

T�1
k=�T+1 ˆcov

w

(k)eık� for � 6= 0 where ˆcov
w

(k) =

T

�1
P

T�|k|
t=1 (w

t

�w̄)(w
t+|k|�w̄), namely the sample autocovariance at lag k (see Brockwell and Davis (1991),

Proposition 10.1.2).
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Figure 3(b) reproduces the term structure of the sample standard deviation of holding
period returns. Di↵erently from yields and forward rates, the volatility of returns raises
steeply with maturity. These observations lead to:

Stylized Fact 2. The term structure of the sample standard deviation of nominal yields
and forward rates slowly declines up to mid maturities and then flattens out or even slowly
increases for long maturities. The term structure of the sample standard deviation of nominal
holding period returns rises with maturity without flattening out.

These facts are well documented in the term structure literature. Note that although
Stylized Fact 1 is a time series characteristic, Stylized Fact 2 features cross-sectional aspects
of the bond data. However, these are intimately related and can be rationalised within an
a�ne framework. The approach proposed in this paper tries to explain these features.

2.2. Inflation

Inflation data are taken from Bureau of Labor Statistics of U.S. Department of Labor,
where monthly observations are available from June 1947 to December 2011. We calculate
(non seasonally adjusted) inflation based on the all urban consumer price index CPIt as:

⇡t = log(CPIt)� log(CPIt�1). (1)

In Table 1 we report the basic summary statistics where inflation is annualised and in percent.
The average inflation is 2.80% with a standard deviation of 3.57%. The last entry of Table 2
reports the Augmented Dickey-Fuller test for inflation. The unit root hypothesis now cannot
be rejected at 5% significance level. However, as for yields, we look at the more revealing
plot of the log periodogram, reported in Figure 4. The periodogram of (normalized) inflation
is plotted (blue line) together with the spectral density of autoregressive processes of order
one with parameters 0.80, 0.98 and 0.99999 (green, red and light blue line respectively), all of
which appear inadequate. The strong degree of persistence is evident yet with some feature
of mean-reversion, as expressed by the slow decay as the frequency increases.

[Insert Figure 4 near here]

Persistence of CPI inflation, in particular in the form of long memory, has been doc-
umented (for the euro area) in detail by Altissimo et al (2009) who argue that this is an
unavoidable consequence of the way in which price indexes are constructed. This is revis-
ited in Section 5 below. Persistence of observed inflation clearly reflects the persistence of
expected inflation, the key variable in term structure modelling. This fact also suggests that
the magnitude of the volatility of unexpected inflation (the di↵erence between observed and
expected inflation), which by construction is serially uncorrelated across time, cannot be too
large for otherwise it would mask the persistence found in the data.

3. Implications for Markov a�ne models

We now revisit the theoretical implications of the persistence of yields, found in the data,
for Gaussian Markov a�ne models. Consider the discrete time version of the Vasicek (1977)
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model, a one-factor Gaussian model. The price of a real zero-coupon bond issued at time t
which expires n periods ahead, here denoted Qn,t, satisfies the no-arbitrage condition

Qn,t = Et (e
m

t+1Qn�1,t+1) , (2)

where Et(·) is the expectation operator conditional on the information available up to time t,
based on the physical measure. It is well-known that assuming no-arbitrage implies existence
of the real pricing kernel emt+1 the exponent of which, for this model, has the simple form

�mt+1 = µr +
1

2
�2�2

x + xt + �✏x,t+1 (3)

where the (single) factor follows an AR(1) process

xt =  xxt�1 + ✏x,t, ✏x,t ⇠ NID(0, �2
x), (4)

and �, µr, x, �2
x are constant parameters with |  x |< 1.

By the standard recursive method one obtains that bond yields rt,n = �(1/n) logQn,t,
forward rates fn,t and holding one-period returns satisfy, respectively,

rt,n = n�1(An +Bnxt), (5)

ft,n = An+1 � An + (Bn+1 � Bn)xt, (6)

yt,n = An � An�1 +Bnxt�1 � Bn�1xt, (7)

where, in turn, the n-varying coe�cients satisfy the well-established Riccati di↵erence equa-
tions

An = An�1 + µr � ��xBn�1 �
1

2
B2

n�1�
2
x, Bn = 1 +  xBn�1, (8)

with initial conditions A0 = B0 = 0.
Consider first the stationary case | x| < 1 giving Bn = (1� n

x)/(1� x). Clearly yields,
forward rates and returns are elementary (linear) transformation of the AR(1) process xt,
and their temporal dependence, under the physical measure, is determined by the magnitude
of  x. Analytically, the spectral densities for yields, forward rates and returns7 are, for
�⇡  � < ⇡,

sr
n

(�) = (Bn/n)
2 sx(�),

sf
n

(�) = (Bn � Bn�1)
2 sx(�),

sy
n

(�) = sx(�) + B2
n�1

�2
x

2⇡
+ 2Bn�1

�2
x

2⇡
<
✓

eı�

1�  xeı�

◆
,

where <(.) denotes the real part of a complex number, ı is the complex unit and sx(�)
indicates the spectral density of the AR(1) state variable (4), equal to �2

x/(2⇡|1 �  xeı�|2).
7For returns y

t,n

the additional terms in the spectral density are due to the fact y
t,n

can be represented
as A

n

� A

n�1 + x

t�1 � B

n�1✏x,t. However the behaviour of the first and third term in s

yn(�) are identical
near the zero frequency.
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By easy derivations, the slope of the log spectra, for �! 0+, will then satisfy

dlog sr
n

(�)

d log �
⇠ 2 x

(1�  x)2
�2,

dlog sf
n

(�)

d log �
⇠ 2 x

(1�  x)2
�2,

dlog sf
n

(�)

d log �
⇠
✓

2 x

(1�  x)2
+

2Bn�1(1� Bn�1 x)

(1 +Bn�1(1�  x))2

◆
�2.

In all cases the slope becomes null at zero frequency and its magnitude, near zero frequency, is
larger the closer  x is to unity. This was already illustrated in Figure 2(b), which shows how
the log-spectral density becomes flat near the zero frequency approaching a positive finite
value8 for  x equal to 0.90 and 0.98, represented by the blue and green line respectively.

The term structures of conditional and unconditional volatility for yields, forward rates
and returns are

vart�1(rt,n) =
⇣Bn

n

⌘2
�2
x, var(rt,n) =

⇣Bn

n

⌘2 �2
x

1�  2
x

,

vart�1(ft,n) =  2n
x �

2
x, var(ft,n) =  2n

x

�2
x

1�  2
x

,

vart�1(yt,n) = B2
n�

2
x, var(yt,n) = B2

n�
2
x +

�2
x

1�  2
x

,

where vart(·) is the variance operator conditional on the information available up to time t,
based on the physical measure. Since Bn ⇠ 1/(1�  x) for large n when | x| < 1, it follows
that, as n ! 1,

vart�1(rt,n) ⇠
✓

�2
x

(1�  x)2

◆
1

n2
, vart�1(ft,n) ⇠  2n

x �
2
x, vart�1(yt,n) ⇠

�2
x

(1�  x)2
, (9)

where ⇠ indicates asymptotic equivalence9. An identical pattern is obtained for the un-
conditional variances. When | x| > 1 the conditional variances will all rapidly explode as
 2n
x (approximately so for yields) for large n. These results are obtained under the im-

plicit assumption, embedded in (3), of constant market price of risk. If one replaces � by
�t = �0+�1xt into (3), for some constant non-zero parameters �0,�1, the same formulae for
the conditional variance term structures apply but with  x replaced by  ̃x ⌘  x � �1�2

x, the
Q measure autoregressive coe�cient.

Consider now the unit root case  x = 1 giving Bn = n. Now the model is nonstationary
under the physical measure so the variance is not finite and the spectral density is not defined,
technically speaking. The quasi-unit root case  x = 0.99999 reported in Figure 2(b), red
line, shows how the log-spectrum will exhibit a sharp peak near zero frequency. The term

8Equivalently, the autocorrelation function is summable and, in particular, proportional to  |u|
x

at lag u.
9We say that a

n

⇠ b

n

, where b

n

6= 0, when a

n

/b

n

! 1 as n ! 1.
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structure of conditional volatility for yields, forward rates and returns will now be

vart�1(rt,n) = �2
x, vart�1(ft,n) = �2

x, vart�1(yt,n) = n2�2
x. (10)

The model is purposely extremely stylized, but it shares the main implications in terms
of persistence and of long maturity behaviour of the volatility term structures with more
sophisticated discrete a�ne models with ARMA state variables. In particular, the cases of
both stationary and non-stationary ARMA state variables are at odd with the empirical
evidence surveyed in Section 2. The stationary case generates a stronger than needed degree
of mean-reversion whereas nonstationarity, either a unit or explosive root, rules out mean-
reversion altogether. Moreover, postulating a unit root makes invalid the evaluation of
impulse responses and variance decomposition. There appears the need for a model able to
generate an intermediate degree mean-reversion between these two cases, without imposing
nonstationarity. This is accomplished by the long memory a�ne term structure model, which
we formalise in the next section.

4. Long memory a�ne term structure models: repre-

sentation

Long memory models, in particular autoregressive fractionally integrated moving average
(ARFIMA) models, bridge the gap between stationary ARMA and ARIMA (when a unit
root is allowed for). In fact, not only long memory models can describe the dynamics
of stationary yet highly persistent time series but can also account for non-stationary yet
mean reverting series, whereby the impulse response function will eventually die out with
time10. There is another, less known, feature of linear long memory models that makes them
particularly useful with respect to a�ne models, namely the fact that they admit a state-
space representation although with infinite-dimensional state variables. This result has been
established by Chan and Palma (1998) and summarized in Appendix D. More importantly,
it turns out that, despite the presence of an infinite number of transition equations, the
likelihood can be computed in a finite number of steps. Therefore parameter estimates can
be obtained and the Kalman filter delivers optimal out-of-sample forecasts and filtered values
of the latent factors.

These considerations suggest to consider Gaussian a�ne models with long memory state
variables. This model is described in the following subsections. We first show how to solve
the model imposing the no-arbitrage condition, yielding the real and nominal term structure.
This can be obtained for a general specification of the model, yet providing a closed-form
solution. We then consider specific parameterizations, such as ARFIMA, which are required
in order to carry our estimation.

4.1. Real term structure

We extend the basic model of Section 3 in two directions. First, we consider a two-
factor model, with latent factors here denoted by xt and zt. Two is the minimal number

10In contrast, in the unit root case the impulse response function does not vanish and persists for ever.
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of factors that permits to derive both the nominal and the real term structure of interest
rates. Extension to multi factors is straightforward and possibly desirable from an empirical
point of view. However the main theoretical features of the model would not di↵er from the
ones of the present model. More importantly, the second departure from the basic model
of Section 3 is to allow for long memory factors. Assume that the real stochastic discount
factor mt is an a�ne function of the two latent factors with zero mean, xt and zt:

�mt+1 = µr + xt + �zzt +
1

2
�0t⌃�t + �0t"t+1 (11)

with i.i.d. innovation

"t =

✓
"x,t
"z,t

◆
⇠ NID

✓✓
0
0

◆
,

✓
�2
x 0
0 �2

z

◆◆
= NID (0,⌃) . (12)

The price of risk is a�ne in the state variables

�t =

✓
�x,t
�z,t

◆
= �0 + �1

✓
xt

zt

◆
(13)

for a 2⇥1 vector �0 = (�x,0, �z,0)0 and a 2⇥2 matrix �1 =

✓
�x,1 �z,1
�x,2 �z,2

◆
of parameters. For-

mulation (13) qualifies the model as ‘essentially’ a�ne. Expression (11) follows by specifying
the one-period real interest rate to be an a�ne function of the factors, that is

r1,t = µr + �xxt + �zzt = µr + xt + �zzt, (14)

where we set �x = 1, and assuming the existence of a conditionally log-normal stochastic
process ↵t = ↵t�1 exp(�0.5�0t�1⌃�t�1 � �0t�1"t) such that EQ

t (Xt+1) = ↵�1
t Et(Xt+1↵t+1) for

any stochastic process Xt+1, where E
Q
t (·) defines the conditional expectation operator under

the Q (see Harrison and Kreps (1979)). Hereafter, we shall specify all model equations and
parameters in terms of the physical measure, unless stated otherwise.

The parameters µr and �z represent the unconditional mean of the one-period real interest
rate and the loading of the factor zt, respectively. In particular, as we shall see below,
factor zt represents (demeaned) expected inflation. Thus leaving �z unrestricted will allow
for a possible transmission channel of money non-neutrality. Finally, (2) follows since the
price of any asset that does not pay dividends is a martingale under Q (once adjusted by
e�r

1,t), that is for zero-coupon bonds Qn,t = EQ
t [e

�r
1,tQn�1,t+1] = Et[e�r

1,tQn�1,t+1↵t+1/↵t] =
Et[Qn�1,t+1emt+1 ].

To close the model one needs to specify the dynamics of the latent factors under the phys-
ical measure. In order to introduce long memory, we need to make a distinction between
latent factors and state variables. The factors, xt and zt, bear a precise economic interpreta-
tion but their dynamics are more conveniently represented by the infinite-dimensional state
vectors Ct = (C0

x,t, C
0
z,t)

0, which obey an infinite-dimensional VAR(1) model

Cx,t+1 = FCx,t + hx"x,t+1, (15)

Cz,t+1 = FCz,t + hz("z,t+1 + �zx"x,t+1), (16)
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for a constant �zx, infinite-dimensional vectors hx,hz and a double-infinite dimensional ma-
trix F. Notice that the innovations in (5)-(5) are the same as in (12). Equations (5)-(5)
represent the transition equation of the state-space of the model used for the Kalman filter
recursion. Obviously we could have written (5)-(5) as Ct+1 = F⇤Ct +h⇤"t+1 for certain ma-
trices F⇤,h⇤ suitably restricted, but it is more convenient to rely on (5-5). The relationship
between factors and state variables is simply

xt = G0Cx,t, zt = G0Cz,t, (17)

for an infinite dimensional vector G = (1, 0, 0 · · · )0 with all zeros from the second row and
below. The two factors will be uncorrelated, and thus independent by (12), when �zx = 0 but
can nevertheless both potentially influence the price of real bonds and real yields through
the price of risk �t.

Despite the infinite dimension of the state variables, it turns out that the model can be
solved much in the same way used for the basic model of Section 3. We report the following
result without proof.

Theorem 4.1. For the pricing kernel (11), the market price of risk (13), the state variable
dynamics (5)-(5) with innovations (12) and the real interest rate (14), the no-arbitrage zero
coupon prices Qn,t satisfy

qn,t = �An �B0
x,nCx,t �B0

z,nCz,t

where qn,t = lnQn,t and the coe�cients satisfy the Riccati recursions

An = µr + An�1 � �x,0�
2
x(B

0
x,n�1hx + �zxB

0
z,n�1hz)� �z,0�

2
zB

0
z,n�1hz

�1

2
�2
x(B

0
x,n�1hx + �zxB

0
z,n�1hz)

2 � 1

2
�2
z(B

0
z,n�1hz)

2 (18)

and

Bx,n =
⇣
1� �x,1�

2
x(B

0
x,n�1hx + �zxB

0
z,n�1hz)� �x,2�

2
z(B

0
z,n�1hz)

⌘
G+ F0Bx,n�1

(19)

Bz,n =
⇣
�z � �z,1�

2
x(B

0
x,n�1hx + �zxB

0
z,n�1hz)� �z,2�

2
z(B

0
z,n�1hz)

⌘
G+ F0Bz,n�1.

(20)

Note that An is scalar while Bx,n,Bz,n are infinite-dimensional vectors in general. These
coe�cients are interpreted as evaluated under the Q-measure unless in (13) one sets �0 = 0
for An or �1 = 0 for Bx,n and Bz,n. For these cases, the corresponding coe�cients are
interpreted to be evaluated under the P measure. The distribution of ‘observed’ bond prices
and yields, viz. the physical measure, is of course function of both the P- and Q-measure
parameters. The dynamic properties of the latent factors xt and zt depend on the chosen
parameterization for F,hx,hz which, in turn, determines the degree of persistence and mean-
reversion of the model.

Real yields would then be obtained as

rn,t = �n�1qn,t = eAn + eB0
x,nCx,t + eB0

z,nCz,t, (21)
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with eAn = n�1An, eBx,n = n�1Bx,n, eBz,n = n�1Bz,n. Similarly, forward rates and holding
period return are given by ft,n = An+1�An+(Bx,n+1�Bx,n)0Cx,t+(Bz,n+1�Bz,n)0Cz,t and
yt,n = An � An�1 + (B0

x,nCx,t�1 �B0
x,n�1Cx,t) + (B0

z,nCz,t�1 �B0
z,n�1Cz,t) respectively.

4.2. Nominal term structure

Let us define the nominal price index at time t as ⇧t with the price of nominal and real
bonds satisfying Qn,t = Pn,t/⇧t = Et [Pn�1,t+1emt+1/⇧t+1] or, equivalently,

Pn,t = Et


Pn�1,t+1

⇧t

⇧t+1
emt+1

�
= Et

⇥
Pn�1,t+1e

�⇡
t+1emt+1

⇤
, (22)

where the (one-period) rate of inflation ⇡t = ln(⇧t/⇧t�1) satisfies

⇡t = Et�1[⇡t] + "⇡,t = (µ⇡ + zt�1) + "⇡,t, (23)

where
"⇡,t ⇠ NID(0, �2

⇡) mutually independent from "x,t, "z,t. (24)

Following the same steps used for the real term structure one obtain the following.

Theorem 4.2. For the pricing kernel (11), the market price of risk (13), the state variable
dynamics (5)-(5) with innovations (12) and the real interest rate (14) and the inflation
dynamics (23)-(24) the no-arbitrage zero coupon nominal prices Pn,t satisfy

�pn,t = A$
n +B$0

x,nCx,t +B$0
z,nCz,t

where pn,t = lnPn,t and the coe�cients satisfy the Riccati recursions

A$
n = µr + µ⇡ + A$

n�1

�1

2
�2
x(B

$0
x,n�1hx + �zxB

$0
z,n�1hz)

2 � 1

2
�2
z(B

$0
z,n�1hz)

2 � 1

2
�2
⇡

��x,0�2
x(B

$0
x,n�1hx + �zxB

$0
z,n�1hz)� �z,0�

2
z(B

$0
z,n�1hz) (25)

and

B$
x,n =

⇣
1� �x,1�

2
x(B

$0
x,n�1hx + �zxB

$0
z,n�1hz)� �x,2�

2
z(B

$0
z,n�1hz)

⌘
G+ F0B$

x,n�1 (26)

B$
z,n =

⇣
1 + �z � �z,1�

2
x(B

$0
x,n�1hx + �zxB

$0
z,n�1hz)� �z,2�

2
z(B

$0
z,n�1hz)

⌘
G+ F0B$

z,n�1.(27)

Nominal yields with maturity n are then given by r$n,t = eA$
n + eB$0

x,nCx,t + eB$0
z,nCz,t where

eA$
n = n�1A$

n, eB$
x,n = n�1B$

x,n and eB$
z,n = n�1B$

z,n. Nominal forward rates and holding period
returns are defined accordingly.
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4.3. Persistence characterization

Solution of the model, both in terms of nominal and real term structure, was obtained
without the need to specify whether the state variables are stationary or not. Indeed, only
linearity of the state variables dynamics is necessary. This is due to the fact that conditional
moments, rather than unconditional moments, are required to solve the model for any given
maturity. We now discuss possible choices for F and, in particular, for hx,hz which define
both the degree of memory, and possibly of stationarity, of the model factors xt, zt through
(5)-(5). These choices define the time series and cross-sectional properties of yields, forward
rates and holding period returns implied by the term structure model.

Throughout the paper we will maintain the assumption that the matrix F satisfies (see
Appendix D)

F =

2

64
0 1 0 · · ·
0 0 1 0
...

...
. . . . . .

3

75 , (28)

By Gaussianity the factors can be expressed as linear processes in the i.i.d. innovations
"x,t, "z,t of (12):

xt =
1X

i=0

�x,i"x,t�i, zt =
1X

i=0

�z,i("z,t�i + �zx"x,t�i). (29)

Stacking together the coe�cients �x,i,�z,i gives the infinite dimensional vector

hx = (1 �x,1 �x,2 �x,3...)
0,hz = (1 �z,1 �z,2 �z,3...)

0. (30)

Stationarity follows if
1X

i=0

�2
x,i < 1,

1X

i=0

�2
z,i < 1. (31)

As explained below, the stationarity condition (31) includes a wide range of possibilities in
terms of the degree of persistence, in turn expressed by the rate at which the coe�cients
�x,i,�z,i go to zero. We briefly summarise such possibilities including the case when the
stationarity condition (31) is violated. Given (29), the factors xt, zt will be defined short
memory if

1X

i=0

| �x,i |< 1,
1X

i=0

| �z,i |< 1. (32)

Alternatively, the factors are said to be long memory if

jX

i=0

| �x,i |! 1,
jX

i=0

| �z,i |! 1 as j ! 1. (33)

Note that short memory (32) implies stationarity (31) since summability is stronger than
square summability. However, long memory (33) does not necessarily implies stationarity. In
this case we will distinguish between stationary long memory processes and non-stationary
long memory processes. The latter case (non-stationary long memory) can be separated into

15



the mean reverting case, namely when (31) is violated and yet

�x,i ! 0, �z,i ! 0 as i ! 1, (34)

and the case when even mean-reversion (34) does not occur. A simple example of this last,
extreme, circumstance is given by the basic model of Section 3 when the single factor xt is
a random walk, namely �x,i = 1 for all i.

4.3.1. Short Memory

We now check that the simple model of Section 3 is nested within the general solution of
Section 4. To achieve this, set hz = 0 since now only the latent factor xt is required. Also,
the simple model is based on a constant market price of risk, that is �1 = 0. Now the infinite
dimensional vector (30) equals

hx = (1  x  2
x  3

x...)
0, (35)

where  x is the autoregressive parameter in (4). By standard arguments model (4) can be
re-written as

xt =
1X

i=0

 i
x"x,t�i, (36)

implying that, obviously, the AR(1) satisfies the linearity assumption (29) with coe�cients
�x,i =  i

x. When |  x |< 1 then the short memory condition (32) is satisfied, and thus both
the stationarity and the mean-reversion conditions apply. Instead, when  x = 1 the AR(1)
becomes a random walk and even (34) fails.

One just needs to find the scalar sequence An and infinite dimensional sequences Bx,n,
solution of the recurrence equations (18)-(19), and verify that indeed the basic a�ne model
(5) is re-obtained. By (28) and �1 = 0 (note that since there is one factor only �1 = �x,1
and �0 = �x,0) recursion (19) becomes

Bx,n = G+ F0Bx,n�1

with initial condition Bx,0 = 0 yielding

Bx,n = (1....1|{z}
n terms

0...)0 for every n � 1. (37)

This implies B0
x,nhx = 1+ x+ ...+ n�1

x = (1� n
x)/(1� x) for every n � 1 which in turn

gives An = An�1 +µr � �x,0�2
x(

1� n

x

1� 
x

)� 1
2�

2
x(

1� n

x

1� 
x

)2, which coincides exactly with (8). Notice
that Cx,t can be expressed as

Cx,t = (Et(xt), Et(xt+1), Et(xt+2), ...)
0
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where Et(xt+i) =
P1

j=i  
j
x"x,t+i�j for all i = 0, 1, ... (see Appendix D). In turn, this implies

B0
x,nCx,t =

n�1X

i=0

Et(xt+i) =
n�1X

i=0

 1X

j=i

 j
x"x,t+i�j

!
=

1�  n
x

1�  x

xt

which coincides with Bnxt re-obtaining the solution of Section 3. This shows that the general
solution (21) and the particular one (5) coincide.

4.3.2. Long Memory

Consider again the representation with the single factor xt. A particularly convenient long
memory parameterization, that nests both stationary ARMA as well as the non-stationary
(and non-mean reverting) random walk is the ARFIMA model. In particular, the factor
xt follows a stationary ARFIMA(1, d, 1) model (see Brockwell and Davis (1991), Definition
12.4.2) when

(1�  xL)(1� L)dxxt = (1 + ✓xL)"x,t, (38)

where the autoregressive and moving average coe�cients  x, ✓x satisfy the usual stationarity
and invertibility conditions

|  x |< 1, | ✓x |< 1, with  x 6= ✓x, (39)

and dx is a real number such that

� 1/2 < dx < 1/2. (40)

When (39) and (40) hold, it can be shown (see Brockwell and Davis (1991), Theorem 12.4.2)
that xt admits the linear representation (29) with coe�cients �x,i = �x,i( ⇠x) satisfying

1X

i=0

�x,iL
i = (1 + ✓xL)(1�  xL)

�1(1� L)�d
x , (41)

function of the 3⇥ 1 vector ⇠x = ( x, ✓x, dx)0. To discuss the stationarity and memory
properties of the factor xt, we use the property

�x,i ⇠ c idx�1 as i ! 1, (42)

which stems from (41) for any dx < 1, for a constant c, function of the parameters ⇠x.
Stationarity (31) then follows when (40) holds. Short memory (32) requires dx  0 and long
memory dx > 0. As a particular case of short memory, stationary ARMA is obtained for
dx = 0. Although stationarity implies mean-reversion, the opposite is not necessarily true
since mean-reversion (34) simply requires dx < 1. Finally, when dx = 1 one obtains the non
stationary ARIMA process, a special case of which is the random walk (when  x = ✓x = 0).

Alternative definitions of long memory when 0 < dx < 1/2, equivalent to (42) for linear
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stationary processes, are in terms of autocovariance function

cov(xt, xt+u) ⇠ c u2d
x

�1 as u ! 1, (43)

and spectral density
sx(�) ⇠ c��2d

x as �! 0. (44)

4.4. P and Q measure implications of long memory

We now provide a quasi-closed form characterization of the general solution for real bond
prices as from Theorem 1. This permits to explore the implications of the long memory
model both in terms of dynamic persistence of yields, forwards and returns as well of the
cross-sectional behaviour of their volatility.

Our interest is on the characterization of the physical measure, namely the ‘true’ distribu-
tion, of observed bond prices and transformation of such as yields, forward rates and holding
period returns, as can be obtained by an ideal historical observation of these quantities in
the market. Assuming that the model is correctly specified, the physical measure will be,
generally speaking, a function of both the P and the Q measure’s parameters. By this we
mean that observed (log) bond prices are function of the loadings coe�cients, namely the An

and the Bx,n,Bz,n, are evaluated under the Q measure, and of the state variables Cx,t,Cz,t,
which are evaluated under the P measure11.

The results below indicate a clear dichotomy, namely that the P measure’s parameters
determine the ‘long-run’ dynamic properties of the physical measure whereas the Q mea-
sure’s parameters contribute to the ‘long maturity’ cross-sectional properties of the physical
measure. We will refer to these results, with a somewhat abuse of notation, as holding ‘un-
der the P’ and ‘under the Q measure’ respectively. In other words, the dynamic persistence
induced by the model does not depend on the form of the market prices of risk or, generally
speaking, on the Q measure. Instead, the combination of the essentially a�ne specification
of the market price of risk together with the long memory parameterization of the factors
shape the volatility term structure for yields, forwards and returns. Precisely the same
results apply to nominal bond characteristics.

To get the result, a key observation is that when the matrix F satisfies (28) (see Ap-
pendix D), which we assume for both short and long memory parameterizations, then the
recursions (19) and (20) in the infinite-dimensional loadings Bx,n,Bz,n can in fact be reduced
into a recursion of a scalar sequence. In particular, by direct evaluation the real loadings

11We are not interested in deriving the loading coe�cients A

n

and the B
x,n

,B
z,n

under the P measure
nor the distribution of the state variables C

x,t

,C
z,t

under the Q measure. For instance, the former permits
straightforward evaluation of term premia.
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will satisfy the recursion:

Bx,n = (bx,n bx,n�1 . . . bx,1 0 . . .)0 , Bz,n = (bz,n bz,n�1 . . . bz,1 0 . . .)0 with

bx,1 = 1,

bx,k = 1� x1(
k�2X

j=0

bx,k�j�1�x,j + �zx

k�2X

j=0

bz,k�j�1�z,j)� x2(
k�2X

j=0

bz,k�j�1�z,j), k � 2,

and

bz,1 = �z,

bz,k = �z � z1(
k�2X

j=0

bx,k�j�1�x,j + �zx

k�2X

j=0

bz,k�j�1�z,j)� z2(
k�2X

j=0

bz,k�j�1�z,j), k � 2,

where we set
x1 ⌘ �x,1�

2
x,x2 ⌘ �x,2�

2
z ,z1 ⌘ �z,1�

2
x,z2 ⌘ �z,2�

2
z . (45)

Similarly, nominal loadings can be expressed as

B$
x,n =

�
b$x,n b

$
x,n�1 . . . b$x,1 0 . . .

�0
, B$

z,n =
�
b$z,n b

$
z,n�1 . . . b$z,1 0 . . .

�0

where the b$x,i and b$z,i satisfy a recursion analogue to the ones above based on (26) and (27).
Useful insights can be obtained by looking at the simpler one-factor case, bz,k = 0. By

recursive substitution one gets

bx,1 = 1,

bx,2 = 1� x,1�x,0,

bx,3 = 1� x,1(�x,0 + �x,1) + 2x,1�
2
x,0,

bx,4 = 1� x,1(�x,0 + �x,1 + �x,2) + 2x,1(�
2
x,0 + 2�x,0�x,1)� 3x,1�

3
x,0,

bx,5 = 1�x,1(�x,0+�x,1+�x,2+�x,3)+
2
x,1(�

2
x,0+�

2
x,1+2�x,0�x,1+2�x,0�x,2)�3x,1(�3

x,0+3�2
x,0�x,1)+

4
x,1�

4
x,0,

bx,6 = .... (46)

We need to distinguish between evaluation of the bx,k under the P and the Q measures.
The first case is obtained when x,1 = 0, which in turn follows when �1 = 0 in (13),
namely for a constant market price. This does not, of course, imply that bond prices are
evaluated under the P measure12. In this case bx,k = 1 for every k and one obtains a (quasi)
closed-form solution to bond prices, as formalized below. When instead x,1 6= 0 then the
bx,k, now evaluated under the Q measure, have a more cumbersome expression. Important
implications can nevertheless be derived: by looking at the recursion above, it is evident that
the behaviour of the bx,k as k increases, depends on the interaction between powers of the slow
(hyperbolic) increase of the partial sum terms

Pk
j=0 �x,j and the fast (exponential) decay of

powers of the term x,1. For instance, whereas the latter term can dominate for small and

12By Gaussianity of the model, the distribution of bond prices only depend on the first two moments.
The mean is evaluated under the P measure when �0 = 0 whereas the variance requires �1 = 0. Therefore
both parameters are required to be zero, implying null market prices of risk, for observed bond prices to be
expressed under the P measure.
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intermediate maturities, the former can dominate for long maturities since
Pk

j=0 �x,j ⇠ ckd
x

as k increases when (42) holds. See Lemma 2 in Appendix E. This gives rise to a remarkable
degree of flexibility of our long memory a�ne model in fitting the volatility term structures
of yields, forward rates and returns.

With the bx,k and the bz,k at hand, the general quasi-closed solution of the model under
the Q measure follows. In fact, setting

hx = (�x,0 �x,1 �x,2...)
0, hx = (�z,0 �z,1 �z,2...)

0, (47)

where �x,i,�z,i are the linear representation coe�cients of the factors xt, zt in (29), one gets
B0

x,nhx =
Pn�1

i=0 bx,n�i�x,i = �x,n,0, B0
z,nhz = �z

Pn�1
i=0 bz,n�i�z,i = �z�z,n,0, where

�x,n,j ⌘
n�1X

i=0

bx,n�i�x,i+j, �z,n,j ⌘
n�1X

i=0

bz,n�i�z,i+j for every j � 0. (48)

Plugging �x,n,0 and �z,n,0 into (18) provides the An, the first moment of the (log) bond prices.
Next, since Et(xt+i) =

P1
j=0 �x,j+i"x,t�j, Et(zt+i) =

P1
j=0 �z,j+i("z,t�j+�zx"x,t�j) for all i =

0, 1, ... then

B0
x,nCx,t =

n�1X

i=0

bx,n�iEt(xt+i) =
n�1X

i=0

bx,n�i

 1X

j=0

�x,j+i"x,t�j

!
=

1X

j=0

�x,n,j"x,t�j,

B0
z,nCz,t=�z

n�1X

i=0

bz,n�iEt(zt+i) = �z

n�1X

i=0

bz,n�i

 1X

j=0

�z,j+i("z,t�j+�zx"x,t�j)

!
=�z

1X

j=0

�z,n,j("z,t�j+�zx"x,t�j),

the variance of which provide the second moment of (log) bond prices. Combining terms,
the term structure of real yields (21) can be expressed as:

rn,t = n�1An +
1X

j=0

(n�1�x,n,j + �zxn
�1�z,n,j)"x,t�j + �z

1X

j=0

(n�1�z,n,j)"z,t�j, (49)

since the n-period (log) bond price of real bonds is given by qn,t = �nrn,t = �An �P1
j=0(�x,n,j + �zx�z,n,j)"x,t�j � �z

P1
j=0�z,n,j"z,t�j. Simple calculations give forward rates

fn,t = qn,t � qn+1,t = An+1 � An +
1X

j=0

(�f
x,n,j + �zx�

f
z,n,j)"x,t�j + �z

1X

j=0

�f
z,n,j"z,t�j, (50)

and holding one-period returns

yn,t = qn�1,t � qn,t�1 = An�An�1 +
1X

j=0

(�y
x,n,j+�zx�

y
z,n,j)"x,t�j+�z

1X

j=0

�y
z,n,j"z,t�j, (51)
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setting

�f
x,n,j ⌘ �x,n+1,j � �x,n,j, j � 0,

�y
x,n,0 ⌘ ��x,n�1,0, �

y
x,n,j ⌘ �x,n,j�1 � �x,n�1,j, j � 1,

with �f
z,n,j and �

y
z,n,j defined accordingly.

Nominal yields r$n,t, nominal forwards f $
n,t and nominal returns y$n,t also satisfy (49), (50)

and (51) respectively but one needs to replace the �x,n,j,�z,n,j with

�$
x,n,j ⌘

n�1X

i=0

b$x,n�i�x,i+j, �
$
z,n,j ⌘

n�1X

i=0

b$z,n�i�z,i+j for every j � 0.

Consider now the restricted case of constant market prices of risk, that is �1 = 0. As
indicated above, this implies that the recursions (19)-(20) for Bx,n,Bz,n are evaluated under
the P measure and are, in fact, parameters-free. Under this circumstance

Bx,n = (1....1|{z}
n terms

0...)0,Bz,n = �z(1....1|{z}
n terms

0...)0 for every n � 1.

Model-implied yields, forward rates and returns will still satisfy (49), (50) and (51), respec-
tively, but now (48) simplifies to

�x,n,j ⌘
n�1X

i=0

�x,i+j, �z,n,j ⌘
n�1X

i=0

�z,i+j for every j � 0. (52)

implying �f
x,n,j = �x,i+j,�

f
z,n,j = �z,i+j j � 0 and �y

x,n,j = �x,j,�
y
z,n,j = �z,j, j �

1,�y
x,n,0 = �

Pn�1
i=0 �x,i,�

y
z,n,0 = �

Pn�1
i=0 �z,i.

Irrespective of the assumptions made on the market prices of risk, in general yields rn,t,
forwards fn,t and returns yn,t have a linear process representation in i.i.d. innovations by
(49)-(50)-(51). Hence derivation of their theoretical spectral density and variances follows
easily.

Theorem 4.3. Under the assumptions of Theorem 4.1 yields have spectral density

sr
n

(�) =
�2
x

2⇡

���
1X

j=0

(n�1�x,n,j + �zxn
�1�z,n,j)e

ı�j
���
2
+
�2
z

2⇡

���
1X

j=0

(n�1�z,n,j)e
ı�j
���
2
, (53)

conditional variance

vart�1(rt,n) = �2
x(n

�1�x,n,0 + �zxn
�1�z,n,0)

2 + �2
z(n

�1�z,n,0)
2, (54)

and unconditional variance

var(rt,n) = �2
x

1X

j=0

(n�1�x,n,j + �zxn
�1�z,n,j)

2 + �2
z

1X

j=0

(n�1�z,n,j)
2. (55)
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The same formulae applies to forward rates and returns by substituting n�1�x,n,j, n�1�z,n,j

with �f
x,n,j,�

f
z,n,j and �y

x,n,j,�
y
z,n,j respectively.

Moreover, the same formulae apply to nominal yields, forwards and returns by replacing the
�x,n,j,�z,n,j with the �$

x,n,j,�
$
z,n,j.

Noticeably, these formulae are extremely general since derived for generic specifications
of the coe�cients �x,j and �z,j.

We can now fully characterise the persistence of yields, forward rates and returns when
long memory is allowed for. Stationary ARFIMA xt and zt are included as a special, para-
metric, case.

Theorem 4.4. Assume

�x,j ⇠ cjdx�1, �z,j ⇠ cjdz�1 as j ! 1 with 0 < dx, dz < 1/2 (56)

and

|�x,j+1 � �x,j|  cj�1�x,j, |�z,j+1 � �z,j|  cj�1�z,j, for any j � J, some finite J. (57)

Under either the P and Q measure, the spectral densities of yields rt,n, forward rates ft,n and
returns yn,t satisfy:

sr
n

(�) ⇠ c�min(�2d
x

,�2d
z

), sf
n

(�) ⇠ c�min(�2d
x

,�2d
z

), sy
n

(�) ⇠ c�min(�2d
x

,�2d
z

) as �! 0+.

Precisely the same formulae apply to nominal yields, forwards and returns.

Alternatively, taking logarithm, it follows that log sr
n

(�) ⇠ min(�2dx,�2dz) log �, log sf
n

(�) ⇠
min(�2dx,�2dz) log � and log sy

n

(�) ⇠ min(�2dx,�2dz) log � for � ! 0+. This shows that
the model spectral density are all negatively sloped near the zero frequency, the more the
larger the long memory parameters dx, dz. We are matching13 Stylized Fact 1. Figure 5
reproduces the log-periodogram of the data of Section 2 superimposing c � 2 d log(�) for d
equal to 0.2 (blue line), 0.3 (green line) and 0.4 (red line). The degree of memory will not
depend on n although away from zero frequency the spectral densities of rn,t, fn,t and yn,t
will all be a↵ected as n varies. Alternatively, the usual characterization of long memory in
terms of long lags behaviour can also be obtained (cf (43)).

[Insert Figure 5 near here]

The degree of memory or, alternatively, of nonstationarity implied by the physical mea-
sure for yields, forwards and rates does not depend on the form of the Q measure since
the parameters, �0 and �1 , governing the market price of risk do not a↵ect these aspects
of the dynamic properties of the model although, of course, contributing to the physical
measure. This result does not depend on the long memory assumption but holds true for
any specification of the essentialy a�ne model. Instead, the cross-sectional properties of
the model-implied physical measure di↵er markedly depending on whether the P or the Q

13It is easy to see that Theorem 4.4 equally applies to nominal yields, forwards and returns.
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measure is considered. The next theorem illustrates the long maturity behaviour of both the
conditional and unconditional variance for yields, forwards and rates under the P measure.
The corresponding Q-measure term structure properties are presented subsequently.

Theorem 4.5. Assume (56) and (57). Under the P measure, as n ! 1:
(i) the conditional variances of yields rt,n, forward rates ft,n and returns yt,n satisfy

vart�1(rt,n) = O(n2d
x

�2+n2d
z

�2), vart�1(ft,n) = O(n2d
x

�2+n2d
z

�2), vart�1(yt,n) = O(n2d
x+n2d

z);

(ii) the unconditional variances of yields rt,n, forward rates ft,n and returns yt,n satisfy

var(rt,n) = O(n2d
x

�1 + n2d
z

�1), var(ft,n) = O(n2d
x

�1 + n2d
z

�1), var(yt,n) = O(n2d
x + n2d

z)..

Under the P measure and long memory, the term structure of volatility for yields and
forwards declines to zero at the same rate when mean-reversion holds14, namely for dx, dx < 1.

Under the same conditions, the term structure diverges, with maturity, for returns as long
as long memory is manifested (either dx or dz greater than zero). These features are obtained
in terms of both conditional and unconditional variances although di↵erent rates are obtained
in these two cases. Comparing this with the short memory case (9) where the volatility term
structure for yields and forwards also declines with maturity under stationarity, long memory
implies a much slower rate of convergence towards zero. For returns, short memory ruled
out divergence altogether (under stationarity). When dx = dz = 1 the unit root results of
(10) are re-obtained as a special case of long memory. In our long memory case the speed
of convergence (towards zero) or divergence is smoothly modulated by the magnitude of dx
and dz, in contrast to the discontinuous behaviour of the simple model of Section 3. We now
present the Q measure results.

Theorem 4.6. Assume (56) and (57). Under the Q measure, when

bx,j ⇠ �x,1(
jX

i=0

�x,i), bz,j ⇠ �z,1(
jX

i=0

�z,i) as j ! 1, (58)

(i) the conditional variance of yields rt,n, forward rates ft,n and returns yt,n as n ! 1
satisfy:

vart�1(rt,n) = O(n4d
x

�2+n4d
z

�2), vart�1(ft,n) = O(n4d
x

�2+n4d
z

�2), vart�1(yt,n) = O(n4d
x+n4d

z);

(ii) the unconditional variances of yields rt,n, forward rates ft,n and returns yt,n as n ! 1
satisfy:

var(rt,n) = O(n2d
x + n2d

z), var(ft,n) = O(n2d
x + n2d

z), var(yt,n) = O(n2d
x

+2 + n2d
z

+2).

Precisely the same formulae apply to nominal yields, forwards and returns by replacing the
bx,j, bz,j with the b$x,j, b

$
z,j.

14Comte and Renault (1996) derive (see their Proposition 12) the analogue result to Theorem 4.5-(i) for
r

n,t

in a continuous time setting.
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The picture changes markedly under the Q measure. Under long memory, the uncon-
ditional variance term structures are now all turning positively sloped for large n, more
prominently so for returns, although could initially decline for short and intermediate matu-
rities depending on the other parameters’ value. In term of conditional variances, the term
structures tend to be negatively sloped when stationarity (0 < dx, dz < 1/2) holds but diverg-
ing otherwise, including the mean-reversion case (1/2 < dx, dz < 1). Therefore, under the
Q measure the long memory model achieve a great deal of flexibility for the volatility term
structure of yields, forwards and returns. Those closed-form results rely on condition (58)
which can be easily verified numerically. In turn, the latter appears to require a su�ciently
small x,z by (46).

Summarizing, the long memory a�ne model is able to generate predictions more ade-
quately aligned with the characteristics observed of the bond data, as spelled out in Stylized
Facts 1 and 2.

5. Inducing long memory in a�ne term structure mod-

els

To allow for the possibility that long memory arises within the a�ne class of models, it
is useful to consider the conventional decomposition of nominal yields on zero-coupon bonds
into real yields, expected inflation and inflation risk premium:

r$n,t = cn + rn,t +
1

n
Et ln(

⇧t+n

⇧t

) + IPn,t, (59)

where IPn,t denotes the inflation risk premium and cn is the Jensen’s inequality term, con-
stant since the model assumes conditional homoskedasticity. We consider two di↵erent
sources of long memory, which in turn can be thought of as related to the expected in-
flation term n�1Et ln(⇧t+n/⇧t) and to the real interest rate term rn,t, respectively. Both
channels are able to induce the form of long memory observed empirically in the data.

5.1. Inflation channel

Recent research (see Altissimo et al (2009))suggests that the CPI inflation in large, ma-
ture, economies is very likely to exhibit long memory, being less persistent than a unit-root
process but at the same time more persistent than a stationary ARMA. Although this result
is illustrated for euro area, we argue that a similar result will apply to US inflation. In
particular, Altissimo et al (2009) document that sub-sectorial inflation rates for the euro
area, comprised by J = 404 sectors, are well described by an ARMA structure with a single
common factor, a simple case of which is the autoregressive structure

⇡i,t = µ⇡i +  ⇡,i⇡i,t�1 + �iut + ✏i,t, i = 1, ..., J,
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where ⇡i,t is the ith sector inflation rate, ut is the i.i.d. common dynamic shock and ✏i,t is
the i.i.d. idiosyncratic component, assumed independent from ut at any leads and lags15.
The autoregressive coe�cients  ⇡,i are assumed i.i.d., in particular random with a common
distribution over the stationary region ensuring that �1 <  ⇡,i < 1 for any sub-sector
i. Although the ✏i,t appear to dominate the variance of the individual ⇡i,t, the common
factor appear to explain a large part of the aggregate CPI inflation dynamics. In fact
var(J�1

PJ
i=1 ✏i,t) is estimated to be much smaller than, about one fourth of the average

variance of the idiosyncratic components16 ✏i,t. At the same time, by well-known aggregation
results (see Granger (1980) and the generalisations by Za↵aroni (2004)) under mild conditions

N�1
NX

i=1

⇡i,t !2 µ⇡ +
1X

k=0

�⇡,kut�k, as N ! 1, (60)

where µ⇡ and � ,k, k = 0, 1, ... are the limit (cross-sectional) averages of the µ⇡,i and  k
⇡,i, k =

0, 1, ... respectively, and !2 denotes convergence in mean square. The crucial result here
is that under some weak conditions, in particular regarding the behaviour of the (cross-
sectional) distribution of the autoregressive roots  ⇡,i near unity (see Figure 3 and Table 3
in Altissimo et al (2009)), (60) occurs and the estimated impulse response of the common
shock ut to CPI inflation satisfies �⇡,k ⇠ c kd

⇡

�1 as k ! 1, which, recalling (42), is coherent
with ⇡t exhibiting long memory with memory parameter d⇡:

cov(⇡t, ⇡t+k) ⇠ c k2d
⇡

�1 as k ! 1. (61)

Note that the expected inflation term in (59) consists of an average of n terms, namely
n�1Et ln(

⇧
t+n

⇧
t

) = n�1Et(⇡t+1 + ...⇡t+n) where ⇡t = ln(⇧t/⇧t�1) is the one-period inflation
based on the CPI index ⇧t. This average turns out to have the same memory properties, for
any given n, as the individual components Et⇡t+j, j = 1, ..., n (see Chambers (1998)).

5.2. Real rate channel

Consider a multi-factor version of the Vasicek-type model of Section 3 with J independent
latent factors, each following a first order stationary autoregressive process:

xj,t =  x,jxj,t�1 + �jut + ✏j,t, j = 1, ..., J,

where ut ⇠ NID(0, 1), ✏j,t ⇠ NID(0, �2
j ) mutually independent one of another and �1 <

 x,j < 1 for all j = 1, ..., J . Under suitable assumptions on the pricing kernel akin to (3),

15In Altissimo, Mojon and Za↵aroni (2009) ✏
i,t

are modelled as ARMA, mutually independent from u

s

for
any t, s but the same aggregation result carries through.

16Note that CPI inflation ⇡

t

is constructed as a weighted average of the sub-sectoral inflation rates ⇡
i,t

but turns out to be strongly positively correlated with the equally weighted average J

�1
P

J

i=1 ⇡i,t based on
J = 404 sectors in France, Germany, Italy only, with a correlation above 0.8.
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real bond yields satisfy the a�ne relationship

rt,n = an +
JX

j=1

n�1Bj,nxj,t, (62)

where, in particular, the n-varying coe�cients Bj,n, j = 1, .., J satisfy Bj,n = (1� n
x,j)/(1�

 x,j). Since Litterman and Sheinkman (1991), the large majority of estimated a�ne models
considers up to three factors17, that is 1  J  3. This approach is essentially dictated by
statistical consideration since the number of parameters to be estimated increases rapidly
with J . On the other hand, a small J induces spurious cross-correlation between estimated
yields at di↵erent maturities, not observed in the data (Dai and Singleton (2000)), and
it is often advocated as causing a modest out-of-sample performance (Du↵ee (2002)). We
argue that this curse of dimensionality can be mitigated, by allowing for a suitable form
of heterogeneity of the AR(1) coe�cients  x,j and then applying the aggregation results of
Granger (1980) as J increases to infinity. In particular, as illustrated in Appendix A, letting
J ! 1 leads to a semiparametric specification of an a�ne term structure model with long
memory yields rn,t:

cov(rn,t, rn,t+k) ⇠ c k2d�1 as k ! 1. (63)

with memory parameter d satisfying 0 < d < 1/2. This semiparametric specification is char-
acterised by an infinite number of coe�cients, akin to the �x,j and �z,j of (29), unrestricted
except for the long memory property (42) (see Appendix A). A natural parameterization
is then represented by the ARFIMA model with coe�cients (41), so that estimation and
inference on a finite, small, number of parameters can be carried out.

In conclusion, both (61) and (63) imply long memory in the nominal yields r$n,t through
(59). Moreover, the inflation channel suggests that inflation data should be certainly included
when estimating the long memory a�ne models since these would help pin down the dynamic
persistence of the data.

6. Long memory a�ne term structure models: empir-

ical example

An empirical application is presented, to describe the potential of the model in capturing
the dynamic persistence of the data and the shape of their volatility term structures. Given
the illustrative scope of the exercise, the simplest possible, two factor, specification is adopted
that permits to disentangle the term structure of real yields and inflation expectation.

17Among the few exceptions, the multifrequency a�ne model of Calvet, Fisher and Wu (2010) where, by
means of an ingenious representation, the number of parameters does not increase with J . An empirical
application with J = 15 is presented.
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6.1. Estimation results

This section uses the monthly data on nominal yields and inflation data of Section 2. To
motivate further the long memory parameterization of our model, Table 3 reports the long
memory parameter estimates obtained by fitting an ARFIMA(1, d, 1) model to yields and
inflation. It turns out that the memory parameter for yields and inflation are positive and
significant, well into the stationary region (40).

[Insert Table 3 near here]

We estimate the model by means of the approximate maximum likelihood estimator
based on the Kalman recursions18. See Appendix D for details. The data sample goes from
November 1985 to December 2011. The model is cast in state space with measurement
equations
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with transition equations (5)-(5) and the innovations to yields satisfy

✏n,t = (eB$0
x,nhx + �zxeB$0

z,nhz)"x,t + eB$0
z,nhz"z,t + ⌫n,t, (64)

where we refer to Theorem 4.2 for the definition of eA$
n, eB$

x,n, eB$
z,n. Here the ⌫n,t ⇠ NID(0, �2

n)
are measurement errors introduced to enhance the flexibility of the model. If the model fits
the data well at a given maturity n, one expects the estimate of �2

n to be small. The co-
variance matrix of the measurement equations innovations (✏n

1

,t, ..., ✏n
k

,t, ✏⇡,t) will be also a
function of the Bx,n,Bx,n,hx,hx, a feature which must be taken into account during the
optimisation. The long memory feature of the model is driven by hx = (1�x,1 �x,2...)0 and
hz = (1�z,1 �x,2...)0 where �x,j = �x,j(⇠x) and �z,j(⇠z) are the linear representation coe�-
cients of the ARFIMA(1, d, 1) factors xt, zt (cf. (38)) with parameters ⇠x = ( x, ✓x, dx), ⇠z =
( z, ✓z, dz)0, respectively. Recalling that the factors and the (infinite-dimensional) state vari-
ables are related by xt = G0Cx,t, zt = G0Cz,t, then the last of the measurement equations
sets zt to be the inflation factor, namely expected inflation. As a consequence, we interpret
xt as the real factor.

[Insert Table 4 near here]

18Using ordinary least squares at the first-stage for full maximum likelihood estimation, shown by Joslin
et al (2011) and Hamilton and Wu (2012) to be computationally e�cient when the state variables follow
an autoregressive process, is not applicable here since we consider latent factors as well as long memory.
This two-stage approach is ruled out here even when observed factors are considered. In fact, although
the long memory parameterization implies an (infinite order) autoregressive structure, the corresponding
autoregressive coe�cients are not unconstrained but satisfy a condition like (42) with the exponent �(d

x

+1)
replacing d

x

� 1.
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Table 4 presents the estimates of the model parameters when long memory is allowed for
both xt and zt. Standard errors, obtained by numerical evaluation of the Hessian matrix, are
reported in small font. Both the real factor xt and the expected inflation factor zt display
a significant positive long memory parameter well in the middle of the stationary region19 .
The AR and MA parameters, driving the short run dynamics, are also large and significant,
although significantly below the unit root level. The real factor xt appears more volatile than
zt in terms of the one-step ahead conditional variance since �x = 0.55% while this equals
0.030% for zt, the latter obtained as the square root of �2

z + �2
zx�

2
x. The non-neutrality

parameter �z is negative and significant. Regarding the mean parameters, the unconditional
mean of the one-period real rate µr equals 0.59% whereas the mean of realised inflation µ⇡
equals 2.80%, the latter being set equal to the sample mean of observed inflation ⇡t. The last
two lines of Table 4 report the estimated variances of the idiosyncratic errors. The model
appears to fit well the yield curve especially for maturities between 3-year and 20-year. The
fit deteriorates at the 30-year and especially for very short maturities such as at 1-month.

Regarding the estimates of the price of risk parameters, both the intercepts vector �0
and the slopes matrix �1 are significant. This suggests that the data reject the statement
by which the P and the Q measures coincide. By Gaussianity of the model, this implies
that both the Q measure mean (through �0) and variance (through �1) for yields, forwards
and returns di↵er from the corresponding moments under the P measure. As illustrated
below, the combination of non zero �1 parameters together with the long memory feature of
the model drastically increases the goodness of fit of the model in terms of volatility term
structures.

[Insert Table 5 near here]

It is interesting to compare these results with the parameters’ estimates obtained by
estimating the short memory version of the model, namely setting dx = dz = 0. These are
reported in Table 5. The AR coe�cients are now much larger, in fact close to the unit root
bound. Noticeably, the fit of the model deteriorated across all maturities, as indicated by
the estimated variances of the measurement errors. A formal test of adequacy between long
and short memory will be presented below.

[Insert Figure 6 near here]

Figures 6(a) and 6(b) plot the filtered factors xt and zt obtained with the Kalman re-
cursion. These factors appear to be a rotation of the ‘level’ and ‘slope’ factors as expressed
by the conventional static principal components, in particular the first and the second one,
extracted from the nominal yields. This is evident in Table 6 which reports the regression
R2 from projecting each of the first four principal components on the filtered values of xt

and zt, either individually or jointly. The goodness of fit is virtually zero when projecting
either the third or the fourth principal component onto the filtered factors. This is to be
expected within a two-factor model.

[Insert Table 6 near here]

19Interestingly, Altissimo, Mojon and Za↵aroni (2009) document an estimate of the long memory parameter
for the euro area CPI inflation equal to 0.13.
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6.2. Revisiting the Stylized Facts

We evaluate the extent to which our long memory model captures the dynamic persistence
found in the data, as formalised in Stylized Fact 1. Figure 7 plots the periodogram (averaged
across maturities) of (standardised) nominal yields, forwards and returns together with a
theoretical spectral density equal to

sLM(�) = c�min(�2d
x

,�2d
z

), �⇡  � < ⇡.

with dx = 0.2862, dz = 0.1878 as from Table 4. The constant c is set such that sLM(�)
integrates to one, viz. one obtains unit variance. This simple specification is equivalent to
the model-implied spectral densities near the zero frequency for yields, forwards and returns,
as indicated in Theorem 4.4, although the other parameters, beyond dx, dz, will be important
to achieve a good fit of the model across all frequencies. Both Table 4 and Figure 7 confirm
that long memory is an important feature of the yields data, inducing a degree of persistence
that well agrees with Stylized Fact 1 .

[Insert Figure 7 near here]

We now investigate the capabilities of the long memory model to reproduce the observed
volatility term structure of yields, forwards and returns. In particular, we aim to establish
whether we can capture Stylized Fact 2. Figure 8 reports the term structures of the sample
standard deviation (blue line) together with both the long memory (green line) and short
memory (red line) model-implied standard deviation for nominal yields (left panel), forward
rates (centre panel) and nominal returns (right panel). The closed form formulae are reported
in Theorem 4.3. The long memory and short memory term structures use the estimated
parameters of Table 4 and Table 5 respectively.

[Insert Figure 8 near here]

The long maturity shape of the volatility term structures depend on the magnitude of the
coe�cients in �1 which ensure that the b$x,i, b

$
z,k are well-behaved for large k and, moreover,

satisfy condition (58).
The di↵erence between the long and short memory is striking: the long memory model

is able to capture Stylized Fact 2, namely a declining volatility term structure for inter-
mediate maturities then flattening out or even raising again for long maturities for yields
and especially for forward rates. Instead the short memory model implies declining curves
for long maturities, in agreement with estimated autoregressive coe�cients close yet smaller
than unity. For nominal returns, the long memory model is able to produce a monotically in-
creasing term structure without violating stationarity. On the contrary, for the short memory
model the volatility term structure appears to flatten out due to the mean-reversion. These
results are particularly insightful and not an artefact of overfitting, In fact these are obtained
by using the maximum likelihood estimator which does not necessarily deliver a perfect fit
of the volatility term structures.
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6.3. Real yields, inflation expectation and inflation risk premia

Our simple estimated specification of the long memory model allows to decompose the
nominal yields term structure (r$nt = �pn,t/n) into the real (rn,t), the inflation expectation
(n�1Et(ln(⇧t+n/⇧t)) and the inflation risk premia ( IPn,t ) term structures according to

r$n,t = cn + rn,t + n�1Et ln(
⇧t+n

⇧t

) + IPn,t. (65)

Concerning the term structure of real yields, the estimated model implies an upward
sloping real yield curve, as presented in Figure 9(a) (green line) where real yields are defined
as rn,t = eAn + eB0

x,nCx,t + eB0
z,nCz,t. We also report in Figure 9(a) the real yields volatility

term structure (blue line) which appears hump curved, declining across maturities yet slightly
increasing at the long end of the curve. Descriptive statistics of real yields for all maturities
are reported in Table 7.

[Insert Table 7 near here]

In Figure 9(b) we plot the time series of real yields for all maturities. Wheres the short
real rates become negative, the long real rates (above 10 year maturity) remain positive
throughout the sample period.

[Insert Figure 9 near here]

Figure 10 presents the inflation risk premia across maturities. The term structure is
hump shaped with a peak at 5 year. The average inflation risk premia here obtained appear
generally similar to the ones reported in the literature20.

[Insert Figure 10 near here]

6.4. Statistical performance

6.4.1. In-sample

Having estimated both the long memory and short memory model, we now present some
specification and goodness of fit analysis. Table 8 reports log-likelihood values and likelihood
ratio test statistic under the null hypotheses H0: d1 = d2 = 0 (short memory model).
The short memory model is rejected at 1% confidence level in favor of the long memory
model. The di↵erent performance is also manifested when comparing the estimates of the
idiosyncratic errors, much larger for the short memory model.

[Insert Table 8 near here]

20Ang et al (2008) find that the unconditional mean of inflation risk premia are equal to 31 and 114
basis points, respectively, for 1 and 5 year bonds. For the same maturities we find 29 and 89 basis points,
respectively.
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We have also evaluated the in-sample forecasting power of the models. This is an in-
sample analysis since we use estimated parameter values based on the entire sample. We
consider four di↵erent forecast horizons (1�, 3�, 6� and 12� months) for each yield, over
the period January 2002 to December 2011, where we evaluate the root mean square error
(RMSE) statistic. The results, presented in Table 9 show that the long memory model
provides a superior goodness of fit across yields and forecasting horizon.

[Insert Table 9 near here]

6.4.2. Out-of-sample

We first compare the out of sample forecasting performance of the long memory and the
short memory version of our model. The RMFE of the forecasts are reported in the top two
panels of Table 10. The evaluation period is January 2002 - December 2011. Each month
we re-estimate the model, using a rolling window of 595 months, and use the results for
the new forecast at 1�, 3�, 6� and 12� month horizon. The predictions are obtained as
the last recursion of the the Kalman filter. The results shows that the long memory model
dominates the short memory one in all cases except in few instances at 1 month horizon.

[Insert Table 10 near here]

We also provide a comparison with other, non-nested, classes of term structure models.
The results are reported in the last three panels of Table 10. We consider a version of Ang
and Piazzesi (2003) model21 , of the regime switching model22 of Ang et al (2008) and of the
Diebold and Li (2006) model. Details on the adopted specification of these models are not
presented for sake of simplicity but are available upon request. All the considered models
contain a relatively similar number of parameters, slightly larger for the Ang and Piazzesi
(2003) and for the Ang et al (2008) models.

Our long memory model appears23 to outperform the Ang and Piazzesi macro model,
the regime switching model of Ang et al and the Diebold and Li model across all forecasting
horizon for short yields. Instead, the other models appear marginally superior for medium
term yields, especially for the 1 and 3 year maturity. The results are only illustrative since
we considered one of the possibly simplest specification of the long memory model without
having undertaken an extensive model specification.

7. Final remarks

In this paper we introduce the long memory a�ne model of the term structure, a dis-
crete time essentially a�ne Gaussian factor term structure model with long memory factors,

21We considered a model with 3 latent factors and inflation, where inflation is uncorrelated with latent
factors. The joint dynamics of the system is described by a VAR model of order 1.

22We exactly replicated the Ang et al (2008) model with their preferred specification, model C.
23Ideally the di↵erences in forecasting performance should be assessed using a formal testing procedure

such as the Diebold and Mariano (1995) test. However, no asymptotic theory exists that is valid when long
memory processes are considered.

31



designed to account for the strong persistence in observed yields and inflation. We provide
the closed-form solution of the model, both in terms of the real and nominal term struc-
ture. A detailed characterisation of the long memory implications in terms of the P and
Q measures’ parameters is presented. Despite the infinite dimensional state variables, we
show how estimation of the model can be still carried out by maximum likelihood using the
Kalman filter recursions. Closed-form expressions for term premia, and other quantities of
economic significance, are easy to obtain. We present an empirical application of a stylized
two factor version of the model which illustrates how extension of the model from short
memory to long memory factors gives a substantial improvement in terms of fit of the model
both dynamically as well as across maturity, in particular for the volatility term structure of
yields, forwards and holding period returns. The model can provide superior out of sample
forecasting performance over many competitive models of the term structure.

Several generalizations are of interest. Given the capability of the long memory model to
induce non-negligible volatility of long term yields, its theoretical and empirical implications
in terms of term premia dynamics could be substantial. Second, in view of the strong
evidence of dynamic conditional heteroskedasticity in observed yields, one should relax the
assumption of unconditional Gaussianity and allow for time-varying conditional volatility.
We leave this and other extensions to further research.

Appendix A. Aggregation and long memory in a�ne

term structure models

Consider the J factor a�ne term structure model

rt,n = an +
JX

j=1

n�1Bj,nxj,t, (66)

where each state variable follows a stationary AR(1) model with a one-factor structure
innovation:

xj,t =  x,jxj,t�1 + �jut + �j✏
⇤
j,t, j = 1, ..., J,

where �1 <  x,j < 1, ut ⇠ NID(0, 1), ✏⇤j,t ⇠ NID(0, 1) mutually independent one another.
Here �j and �j are parameters. If one wants to exclude the idiosyncratic component of
the factor structure it su�ces to set �⇤

j = 0 for j = 1, ..., J . No-arbitrage implies the J
cross-equation restrictions

Bj,n =
(1�  n

x,j)

(1�  x,j)
, j = 1, ..., J,

We wish to evaluate the limiting behaviour of rt,n as J ! 1 and in particular its memory
properties. To formalize this, it is useful to assume that the parameters ✓j = ( x,j, �j, �j)0

are random i.i.d. draws across j = 1, ..., J , mutually independent one another. Note that
by letting J ! 1 the parameters �j and �2

j must both be Op(J�1), a simple form of which
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consists of:

�j =
�⇤j
J
, �j =

�⇤
j

J
1

2

, (67)

where �⇤j , �
⇤
j are i.i.d. random parameters such that 0 <| E�⇤j |< 1 and 0 < E�⇤2

j < 1.
To see why (67) is required, note that the variance of rn,t conditional on parameters ✓ =
(✓1, ..., ✓J) satisfies

var(rn,t) =
1X

k=0

 
JX

j=1

n�1Bj,n�j 
k
x,j

!2

+
1X

k=0

 
JX

j=1

(n�1Bj,n�j 
k
x,j)

2

!
< 1

and (67) ensures that var(rn,t) would not increase just because a larger number J of factors
xj,t is considered. In other words, the larger is J , the smaller necessarily the loadings �j and
the variances �2

j must be.
Therefore the second term on the right hand side of (66) involves, through (67), averaging

across j = 1, ..., J and it can be decomposed as the sum of two components, one function of
the common innovation ut and the other function of the idiosyncratic innovations ✏j,t:

JX

j=1

n�1Bj,nxj,t =
1X

k=0

1

J

JX

j=1

�
n�1Bj,n�

⇤
j 

k
x,j

�
ut�k +

1X

k=0

 
J�1/2

JX

j=1

n�1Bj,n 
k
x,j✏j,t�k

!

= UJ,n,t + EJ,n,t.

To close the model assume that the  x,j are i.i.d. with density f( ) over the interval [0, 1).
This ensures stationarity of the model. Instead, no distributional assumptions are required
for the other parameters. However, we can leave f( ) unspecified except for its behaviour
in proximity of 1 (see Assumption II of Za↵aroni (2004)) such as24:

f( ) ⇠ c(1�  )b as  ! 1�, (68)

for some constants b, c where 0 < c < 1 and b > �1 to ensure integrability of f( ).
For the common component, UJ,n,t, one can show (see Theorem 5 of Za↵aroni (2004))

that for b > �1/2

UJ,n,t =
1X

k=0

�̂n,kut�k !2 Un,t =
1X

k=0

�n,kut�k as J ! 1,

where

�̂n,k =

 
1

J

JX

j=1

n�1Bj,n�
⇤
j 

k
x,j

!
!p �n,k = E(�⇤j )E(n�1Bj,n 

k
x,j) for k = 0, 1, ... (69)

and !p denotes convergence in probability. Moreover, by (16) of Za↵aroni (2004) for finite

24Particular important cases of (68) are the uniform distribution, for b = 0, and the Beta (p, q) distribution,
for q = b+ 1.
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n
�n,k ⇠ cnk

�(b+1) as k ! 1.

for some constant cn. In fact, notice that the term n�1Bj,n does not interfere into the limit
behaviour of �̂n,k which, in turn, behaves as E k

x,j for large k since n�1(1� n)/(1� ) ⇠ 1
as  ! 1�, hence not a↵ecting the way in which (68) leads to the result.

Similarly, the idiosyncratic component EJ,nt satisfies (see Theorem 3 of Za↵aroni (2004))
for b > 0

EJ,n,t !d En,t =
1X

k=0

�n,k⌘t�k as J ! 1,

with ⌘t ⇠ NID(0, 1) and where, for finite n,

�n,k ⇠ cnk
�(b+1)/2 as k ! 1,

where !d denotes convergence in distribution.
Therefore, for large J , real yields rn,t can be expressed, net of constant terms, as the sum

of Un,t and En,t, with coe�cients satisfying (42) and hence implying

cov(Un,t, Un,t+k) ⇠ cn k
�2b�1 and cov(En,t, En,t+k) ⇠ cn k

�b as k ! 1.

Long memory is obtained for b not too large, in particular when �1/2 < b < 0 for Unt and
0 < b < 1 for En,t, respectively. Therefore (63), namely

cov(rn,t, rn,t+k) ⇠ c k2d�1 as k ! 1

holds for some 0 < d < 1/2 under the above conditions. Note that the limit of rn,t can
be viewed as a semiparametric a�ne model since Un,t and En,t are function of the infinite
sequences of coe�cients �n,k, �n,k, k = 0, ... which are unspecified except for their long lag
behaviour as k ! 1, as indicated above. For practical estimation of the model, as indicated
in the main body of the paper, a suitable parameterization of the �n,k and vn,k is necessary
such as the ARFIMA.

Appendix B. Pricing implications of long memory

We summarize here the pricing implications of allowing a tradeable asset to have long
memory. Following Rogers (1997), assume that the log price of a generic asset, here denoted
pt, follows a fractional Brownian motion which can be represented as

pt = k

Z 1

�1

⇣
(t� s)H�1/2

+ � (�s)H�1/2
+

⌘
dBs, t 2 R, (70)

where x+ = x1(x � 0), for a positive constant k where Bt denotes a Brownian motion (set
B0 = 0) and H 2 (0, 1) is a scalar parameter. It is well known that the one-period rate
of return rt = pt � pt�1 is a stationary, mean zero, stochastic process with long memory
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whenever H 6= 1/2 since

cov(rt, rt+u) ⇠ c u2H�2, as u ! 1. (71)

Expression (71) is analogue25 to (43) by setting H = d+ 1/2. Generally speaking, represen-
tation (70) implies some predictability so that one can obtain gains with an arbitrarily small
variance over a finite period, based on a combination of ‘buy-and-hold’ strategies. More
formally, Rogers (1997) shows that rt is not a semi-martingale for H 6= 1/2 and thus, by
the fundamental theorem of asset pricing (Delbaen and Schachermayer (1994)), a mild form
of arbitrage exists called ‘free lunch with vanishing risk’. An essential condition for this is,
however, to observe the entire history of log prices. Instead, rt = Bt when H = 1/2, rt is
i.i.d. and therefore not predictable. Hence no-arbitrage holds.

Cheridito (2003) shows that profitable ‘buy-and-hold’ strategies, with a vanishing risk,
can still be constructed when observing the asset price over a finite interval. However, it is
essential to be able to trade over any arbitrarily small interval of time, a condition ruled out
when observing data in discrete time. Therefore, observing a finite number of observations
over a finite time interval rules out26 mild forms of arbitrage such as ‘free lunch with vanishing
risk’. The previous results assumed a friction-less market. Guasoni et al (2010) show that
even a minimal amount of transaction costs is enough to rule out arbitrage opportunities
when asset (log) pricing follow a fractional Brownian motion, ensuring the existence of an
analogue concept to equivalent martingale measure.

Therefore, although long memory in asset prices can have potentially dramatic conse-
quences ruling out existence of pricing functionals, it turns out that very stringent condi-
tions are required for this to be verified. These conditions are extremely unlikely to hold in
practice.

Appendix C. Alternative approaches to model the per-

sistence of nominal bonds

The persistence of nominal yields represents an important challenge to models of the
term structure. Although solution of a�ne models, as exemplified in the previous sections,
does not require stationarity since it is based on evaluation of conditional moments, the
possibility of unit root state variables is troublesome.

Two main approaches have emerged in the literature to tackle this problem. One strand
maintains the assumption that the state variables’ dynamics is described by a parametric
linear process such as a finite order VAR27. Stationarity is typically imposed in the estima-
tion. It is well known that the ordinary least squares estimates of the maximal autoregressive

25It can be shown that the discrete-time process r

⌧

, ⌧ = 0,±1, ... admits a representation (29) with
coe�cients satisfying (33) and (42).

26Rogers (1997) notes that it is not the long memory feature (71) of the model that could lead to arbitrage
opportunities. In fact he shows how to construct a Gaussian process satisfying (71) and yet with the
semimartingale property (see his Section 5).

27Among this vast literature, see for instance Dai and Singleton (2000), Du↵ee (2002) and Ang and Piazzesi
(2003).
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root are plagued by a downward bias, the more intense the closer the root is to unity (see
Kendall (1954)), suggesting a spuriously low degree of mean-reversion found in the data.
The various approaches of this line of research di↵er for the way used to mitigate this bias.
The aim here is to a↵ord a very precise estimate of the maximal autoregressive root which,
when below unity, justifies the stationarity paradigm. For instance, it has been proposed
that adding further information into the state space could mitigate the bias problem, such as
including both short and long term yields (see Ball and Torous (1996)) or long horizon sur-
vey forecasts of short yields (see Kim and Orphanides (2012)). Others rely on identification
assumptions such as Joslin et al (2010), who impose the same degree of persistence under
the P and Q measures, making the model more parsimonious and thus, as a by product,
a↵ording more precise estimation. Prompted by the recent findings of Joslin et al (2011)
and Hamilton and Wu (2012), who show that ordinary least squares provides a computation-
ally e�cient first-stage method for full maximum likelihood estimation, Bauer et al (2012)
realize that bias-corrected estimators could then be easily a↵orded in such first-stage part
of the estimation procedure. An alternative bias-correction method is proposed in Jardet
et al (2013) by blending stationarity-imposed estimates and unit root by means of model
averaging techniques.

A second strand of the literature departs from linearity altogether and instead explores
di↵erent, possibly nonlinear, models for yields dynamics. This would permit to capture a
strong degree of mean-reversion for extreme values of the data, together with no or limited
mean-reversion when the data are observed in the centre of their distribution. Nonparamet-
ric approaches, hence allowing for an unspecified form of nonlinearity, include Ait-Sahalia
(1996), Stanton (1997) and Conley et al (1997) among others. Another attractive, paramet-
ric, nonlinear alternative is obtained by means of allowing regime switching state variables,
as illustrated below, which is very e↵ective in capturing persistence.

Our long memory model lies somewhere in between these two approaches. We are pos-
tulating a stationary Gaussian, hence linear, model, retaining the possibility of estimating
the model with maximum likelihood and the Kalman recursions. In fact the factors have
a Gaussian VAR(1) representation, departing from the finite-dimensional DAQ

0 (N) class.
However, in our case the autoregressive coe�cients or, equivalently, the impulse response
function, cannot be left unconstrained but instead must satisfy a suitably defined long lags
behaviour in order to induce long memory. Nonlinear estimation cannot be avoided. In a
time series context, it has been widely established that a degree of persistence similar to
long memory can also be induced by regime switching models when the transition matrix
has most of its mass on the diagonal terms (see Diebold and Inoue (2001)). This prompts us
to investigate the extent to which regime switching term structure and long memory models
capture similar features of the data. Insights can be obtained from a simple, discrete time,
regime switching term structure model for real yields such as

rn,t(i) = cn(i) + dnxt, (72)

with one factor that follows the regime switching process:

xt = µ(i) +  xxt�1 + �(i)✏x,t, (73)
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where the regime variable st = i 2 {1, ..., K} = K follows a K-state Markov chain with
constant (under Q) transition probabilities pi,j = Pr(st = i|st�1 = j), i, j 2 K. Model (72)-
(74)-(75) is a stylized version of Ang et al (2008). The constant autoregressive parameter
satisfies | x| < 1 whereas drift and volatility parameters are assumed to depend on the
regime variable, µ(i), �(i), i 2 K. The a�ne function coe�cients satisfy cn(i) = Cn(i)/n,
dn = Dn/n, i 2 K with

Cn+1(i) = g (Cn(j), Bn, µ(j),�(j), j 2 K; ✓) , (74)

Dn+1 = �1 +  xDn, (75)

where ✓ are constant parameters. A particular element of this class of models will be char-
acterised by a specific choice for the function g(·). Importantly, closed-form solution of a
general regime switching terms structure models requires regime-invariance of the coe�cients
Dn (see Dai and Singleton (2003)).

From (72) it follows

cov(rn,t, rn,t+k) =

cov(cn(st), cn(st+k)) + d2ncov(xt, xt+k) + dncov(cn(st), xt+k) + dncov(cn(st+k), xt),

and
var(rn,t) = var(cn(st)) + d2nvar(xt) + 2dncov(cn(st), xt).

The regime switching mechanism influences the second moments of the yields rn,t across
maturity primarily through the second moments of cn(st). Instead, the e↵ect of xt is of
second-order importance for large maturity n since the regime-invariant a�ne coe�cients dn
converge rapidly toward zero with n when |  x |< 1.

Diebold and Inoue (2001) illustrate, with a detailed Monte Carlo experiment that when
the p1,1 = p2,2 = 0.95 (they consider K = 2) and for samples between 200 and 400 obser-
vations, that long memory is manifested with estimates of the memory parameter well in
the stationary region (40). Such values for the transition probabilities are not too dissimilar
from estimated probabilities found in the term structure literature, especially when a small
number of states K is considered28.

Therefore, regime switching and long memory models are both able to account for the
persistence of observed yields29, implying an asymptotic behaviour of the autocovariances
such as (43). The two models can instead di↵er with respect to the term structure of
volatility. In fact, the regime-invariant coe�cients dn will either decrease rapidly towards
zero or explode for large maturity depending on whether  x is smaller or larger than unity,
much in the same way as for the basic model of Section 3. A slowly decaying volatility is
not warranted and requires a suitable parameterization of the sequence cn(i). In any case, a
closed-form expression of the volatility term structure does not follow in general. Instead, our

28Among others see Bansal and Zhou [Table 4](2002), Evans [Table 2] (2003), Ang et al [Table 3] (2008),
Dai et al [eq (34)] (2007) and Bikbov and Chernov (2013)). Note that Ang et al (2008) consider four states
and the transition probability matrix is less concentrated, than others, around the diagonal. Dai et al (2007)
consider constant transition probabilities under the Q measure.

29The multifrequency term structure model of Calvet, Fisher and Wu (2010) might also be able to describe
this feature of the data, given its strong analogies with regime switching models.
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long memory model preserves a closed-form solution yet providing a volatility term structure
which can be either (mildly) negatively or positively sloped for long maturities.

Appendix D. State space representation and estima-

tion of linear long memory processes

Chan and Palma (1998) clarify that ARFIMA admit an infinite-dimensional state space
representation. In particular, setting �i = �i(⇠0)0 for the p+q+2 parameter ⇠ = (✓1, ..., ✓q, 1, ...., p, d, �2)0

where ⇠0 denotes the true value, the ARFIMA(p, d, q) process

yt =
⇥(L)

 (L)
(1� L)�d✏t =

1X

i=0

'i✏t�i,

is shown to be equivalent to the state space system (see Chan and Palma (1998), p. 723)

Xt+1 = FXt +H✏t, (76)

yt = GXt + ✏t,

where Xt is an infinite dimensional vector defined as

Xt =

2

6664

E[yt | yt�1, yt�1, ...]
E[yt+1 | yt�1, yt�1, ...]
E[yt+2 | yt�1, yt�1, ...]
...

3

7775
,

with coe�cients

F =

2

64
0 1 0 · · ·
0 0 1 0
...

...
. . . . . .

3

75 ,

H = ['1 '2 . . .]0 and

G = [1 0 0 . . .].

Despite the infinite dimensionality of the system, Chan and Palma (1998) show that based
on a sample of T observations (y1, ...yT ) the exact Gaussian likelihood function can be ob-
tained through the usual Kalman recursion, based on the first T components of the Kalman
equations (76). Although the exact likelihood can be computed in a finite number of steps,
O(T 3) evaluations are required. Therefore, Chan and Palma (1998) propose an approxi-
mate maximum likelihood approach which can be computed in a smaller number of steps,
yet maintaining the same asymptotic properties. This is obtained by recognising that the
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first-di↵erence yt � yt�1 satisfies

yt � yt�1 =
1X

i=0

 ⇤
i ✏t,  ⇤

i =  i �  i�1,  ⇤
0 = 1.

Consider its m-truncation, for an arbitrarily chosen m > 1,

zt =
mX

i=0

 ⇤
i ✏t.

Then zt is a finite-order, in fact m-order, moving average and its state space representation
can be easily obtained:

Xt+1 =


0 Im
0 · · · 0

�
Xt +

2

64
 ⇤
1
...
 ⇤
m

3

75 ✏t, (77)

zt = [ 1 0 · · · 0 ]Xt + ✏t. (78)

Now the algorithm requires O(m2T ) iterations, where typically one sets m < T . The trun-
cation implies an approximation error which, nevertheless, is mitigated by having taken the
first-di↵erences since the  ⇤

i decay to zero faster than the  i. The asymptotic theory de-
veloped by Chan and Palma (1998) requires m to diverge to infinity with T although at a
smaller rate such as m = T �, � � 1/2. Note that the approximation is better the larger is
m. The approximate maximum likelihood estimator for ⇠ is then

⇠̂ = argmax⇠ lT (⇠)

where the approximate Gaussian log likelihood is

lT (⇠) = �1

2
log det[M(⇠)]� 1

2
z0TM(⇠)z,

and where M(⇠0) is the population covariance matrix corresponding to zT = (z1, ..., zT )0.
We rely on the above set up although we find more convenient to define the transition

equations as (note the time index of the state variable):

Xt = FXt�1 +H✏t.

Following the Monte Carlo results in Chan and Palma (1998), we set the truncation at
m = 60 lags.

Appendix E. Proof of Theorem 4.4, 4.5 and 4.6

We first establish two preliminary lemmas.
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Lemma E.1. For a finite d assume

�i ⇠ cid�1 as i ! 1.

Setting

�n,0 =
n�1X

j=0

�j (79)

then
nX

i=1

�i,0 ⇠

8
<

:

cn log n, d = 0,
cnd+1, d > 0,
cn, d < 0,

as n ! 1,

and
nX

i=1

�2
i,0 ⇠

8
<

:

cn log2 n, d = 0,
cn2d+1, d > 0,
cn, d < 0,

as n ! 1,

where c denotes an arbitrary constant, not always the same.

Proof. Assume with no loss of generality that �i 6= 0 for all i < 1. Consider case d > 0.
Since �i is (asymptotically) monotone in i

iX

j=1

�j ⇠ c

Z i

1

jd�1 = cid as i ! 1,

then
nX

j=1

�j,0 ⇠ cnd+1 as n ! 1.

When d = 0 instead
iX

j=1

�j ⇠ c

Z i

1

j�1 = c log(i) as i ! 1,

and
nX

j=1

�j,0 ⇠ cn log(n) as n ! 1.

Finally, when d < 0
iX

j=1

�j ⇠ c

Z i

1

jd�1 = c as i ! 1,

yielding
nX

j=1

�j,0 ⇠ cn as n ! 1.

The results for
Pn

j=0�
2
j,0 follow along the same lines. QED
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Lemma E.2. For a finite d assume

�i ⇠ cid�1 as i ! 1.

Setting

�n,i =
n�1X

j=0

�j+i

then

�n,i =

⇢
O((log(n)), d = 0,
O(nd + id), d 6= 0,

for i  n,

and

�n,i =

⇢
O(n/i), d = 0,
O(nid�1), d 6= 0,

for i > n.

Proof. Consider d = 0. Then for 0 < i  n,
Pn�1

j=0 1/(i+j)  1/i+
Pn�1

j=1 1/j ⇠ c log(n).
When instead i > n then for some 0 < ñ < n, by the mean value theorem,

n�1X

j=0

1

(i+ j)
⇠ c(log(n+ i)� log(i)) = c

n

ñ+ i
 c

n

i
.

For d > 0, when i  n then
Pn�1

j=0 (i+j)d�1 ⇠ c((n+i)d�id) ⇠ cnd since nd  ((n+i)d�id) 
nd(2d � 1). When d < 0 then

Pn�1
j=0 (i+ j)d�1 ⇠ c(id � (n+ i)d) ⇠ cid whereas if i ⇠ cn then

(id � (n+ i)d) ⇠ cnd. For i > n by the mean value theorem, for some 0 < ñ < n,

nX

j=1

(i+ j)d�1 ⇠ c((n+ i)d � id) = cn(ñ+ i)d�1  cnid�1.

Similar reasonings apply to the case d < 0. QED
Proof of Theorem 4.4.

We first characterise the log lags behaviour of the autocovariances and the subsequently
the local behaviour of the spectra near the zero frequency. For given n, Lemma E.2 can be
strengthen to

�x,n,j ⇠ cjdx�1, �z,n,j ⇠ cjdz�1 as j ! 1.

Note that, since n is fixed, this result applies for any values for bx,k, bz,k, irrespective of
whether �1 is zero or not, that is under either the P or the Q measure.

The autocovariance of rn,t satisfies

cov(rn,t, rn,t+u) = �2
x

 1X

j=0

⇧x,j⇧x,j+u

!
+ �2z�

2
z

 1X

j=0

(n�1�z,n,j)(n
�1�z,n,j+u)

!

⇠ cu2d
x

�1 + cu2d
z

�1 as u ! 1,

setting ⇧x,j ⌘ n�1�x,n,j + �zxn�1�z,n,j. To show this, we use a truncation argument as
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follows. From
P1

j=0⇧x,j⇧x,j+u =
Pu

j=0⇧x,j⇧x,j+u +
P1

j=u+1⇧x,j⇧x,j+u one gets, as u ! 1,

uX

j=0

⇧x,j⇧x,j+u ⇠ c⇧x,u

uX

j=0

⇧x,j ⇠ cu2d
x

�1

and, likewise,
1X

j=u+1

⇧x,j⇧x,j+u ⇠ c
1X

j=u+1

⇧2
x,j ⇠ cu2d

x

�1.

The same applies for the second term of cov(rn,t, rn,t+u) in �z,n,j+u. Moreover, by (57),
cov(rn,t, rn,t+u) satisfies the quasi-monotonic convergence condition
|cov(rn,t, rn,t+u)� cov(rn,t, rn,t+u+1)| = O(u�1|cov(rn,t, rn,t+u)|) and the bounded variation
condition

P1
k=u |cov(rn,t, rn,t+k)� cov(rn,t, rn,t+k+1)| = O(| cov(rn,t, rn,t+u |) as u ! 1. In

fact, since |⇧x,j � ⇧x,j+1|  cj�1⇧x,j by elementary calculations,

1X

j=0

|⇧x,j||⇧x,j+u � ⇧x,j+u+1| =
uX

j=0

|⇧x,j||⇧x,j+u � ⇧x,j+u+1|+
1X

j=u+1

|⇧x,j||⇧x,j+u � ⇧x,j+u+1|

 c|⇧x,u � ⇧x,u+1|
uX

j=0

|⇧x,j|+ c
1X

j=u+1

|⇧x,j||⇧x,j � ⇧x,j+1|  cu�1|⇧x,u|
uX

j=0

|⇧x,j|+ c
1X

j=u+1

j�1|⇧x,j|2

 cu�1|⇧x,u||ud
x |+ c

1X

j=u+1

j�2d
x

�3  cu�1|u2d
x

�1|  cu�1
1X

j=0

|⇧x,j⇧x,j+u|,

the same holding for the term in �z,n,j+u. Therefore, the conditions of Young (1974), Lemma
III-12, hold concluding the proof. The same proof apply to the spectral density of fn,t and
yn,t. QED
Proof of Theorem 4.5. The results easily follow by applying Lemma E.1 to the conditional
variances formulae (54). For the unconditional variances, use Lemma E.2 together with a
truncation argument. For example, for var(rt,n)

1X

j=0

(n�1�x,n,j)
2 =

nX

j=0

(n�1�x,n,j)
2 +

1X

j=n+1

(n�1�x,n,j)
2,

and
nX

j=0

(n�1�x,n,j)
2 = O(n�2n2d

x

+1 + n�2
nX

i=1

i2dx) = O(n2d
x

�1),

1X

j=n+1

(n�1�x,n,j)
2 = O(

1X

j=n+1

i2(dx�1)) = O(n2d
x

�1).

A similar reasoning applies to var(ft,n). For var(yt,n) notice that since dx, dz < 1/2 thenP1
j=0 �

2
x,j and

P1
j=0 �

2
z,j are bounded. QED

Proof of Theorem 4.6. Focus on �x,n,j, the same results applying to �z,n,j. Since bx,j ⇠
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cjdx as j ! 1, re-writing

�x,n,j =
n�1X

j=0

bx,n�i�x,i+j =
[n/2]X

j=0

bx,n�i�x,i+j +
n�1X

j=[n/2]+1

bx,n�i�x,i+j ⌘ I + II

one gets

I =
[n/2]X

j=0

bx,n�i�x,i+j ⇠ cnd
x

[n/2]X

j=0

(i+ j)dx�1 ⇠ cnd
x(([n/2] + j)dx � jdx),

and
II ⇠ c(j + n)dx�1nd

x

+1.

For I one obtains

I ⇠
⇢

n2d
x j/n ! 0

nd
x

+1jdx�1 n/j ! 0,

where the two cases coincide when j/n ⇠ c.
For the conditional variance of yields rn,t the result follows simply by substituting the

above results into �x,n,0/n and �z,n,0/n and squaring terms. An easy truncation argument
leads to the unconditional variance expression, whereby

1X

j=0

�x,n,j/n =
nX

j=0

�x,n,j/n+
1X

j=n+1

�x,n,j/n

and we apply the results obtained above to the two cases 0  j  n and j > n, then squaring
terms. With respect to forward rates fn,t the conditional variance result follows from

�x,n+1,0 � �x,n,0 ⇠ c((n+ 1)2dx � n2d
x) ⇠ cn2d

x

�1,

whereas for their unconditional variance, by a truncation argument,

1X

j=0

(�x,n+1,j � �x,n,j)
2 ⇠ c

1X

j=0

j2dx�2((n+ 1)dx+1 � nd
x

+1)2 ⇠ cn2d
x .

Finally, for returns the result follows straightforwardly substituting I and II into the con-
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ditional variance expression. In terms of the returns’ unconditional variance

var(yn,t) = O
⇣ 1X

j=0

(nd
x

+1jdx�1 � (n� 1)dx+1(j + 1)dx�1)2
⌘

= O
⇣ 1X

j=0

(nd
x

+1(jdx�1 � (j + 1)dx�1) + (nd
x

+1 � (n� 1)dx+1)(j + 1)dx�1)2
⌘

= O
⇣
2

1X

j=0

n2d
x

+2(jdx�1 � (j + 1)dx�1)2 + 2
1X

j=0

(nd
x

+1 � (n� 1)dx+1)2(j + 1)2dx�2
⌘

= O
⇣
n2d

x

+2
1X

j=0

j2dx�4 + n2d
x

1X

j=0

j2dx�2
⌘
= O(n2d

x

+2),

since (j + 1)dx�1 � jdx�1 = (dx � 1)(j + ✏)dx�2 ⇠ cjdx�2 for some 0 < ✏ < 1. QED
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Fig. 4. We plot the periodogram ordinates near the zero frequency for inflation (blue line)
where for a sample of generic observables (w1, ...wT ) the periodogram is:

Iw(�) =
1

2⇡T

�����

TX

t=1

wte
ı�t

�����

2

, �⇡ < �  ⇡.

Data are standardized. We also report the theoretical spectral density for an AR(1) process

process with unit variance, equal to sAR(1)(�) =
(1��2)

2⇡ |1� �eı�|2 with �⇡ < �  ⇡ and AR
coe�cient � equal to 0.80 (green line), 0.98 (red line) and 0.99999 (light blue line). On the
horizontal axis the numbers 1  j  25 refer to the first 25 frequencies �j = 2⇡j/T .
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Fig. 5. We plot the logarithm of the periodogram ordinates near the zero frequency for
nominal yields (light blue line), forwards (yellow blue line) and returns (purple line), averaged
across maturity, where for a sample of generic observables (w1, ...wT ) the periodogram is

Iw(�) =
1

2⇡T

���
PT

t=1 wteı�t
���
2
, �⇡ < �  ⇡ together with the spectral density

sLM(�) = c��2d, �⇡ < �  ⇡,

setting c = 1�2d
2⇡1�2d

to ensure unit variance, with long memory parameter d equal to 0.20
(green line), 0.30 (green line) and 0.40 (red line). Data are standardized. On the horizontal
axis the numbers 1  j  25 refer to the first 25 frequencies �j = 2⇡j/T .
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Fig. 7. We plot the logarithm of the periodogram ordinates near the zero frequency for
nominal yields (green line), forwards (light blue line) and returns (red line), averaged across
maturity, and inflation (purple) where for a sample of generic observables (w1, ...wT ) the

periodogram is Iw(�) =
1

2⇡T

���
PT

t=1 wteı�t
���
2
, �⇡ < �  ⇡ together with the spectral density

(blue line)
sLM(�) = c��2d, �⇡ < �  ⇡,

setting c = (1�2d)/2⇡1�2d to ensure unit variance, with long memory parameter d = 0.2862.
On the horizontal axis the numbers 1  j  25 refer to the first 25 frequencies �j = 2⇡j/T .
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Fig. 8. We report the term structure of the sample standard deviation (blue line) and of
the corresponding estimated model-implied standard deviation for the long memory model
(green line) and short memory model (red line) for nominal yields (left panel), nominal
forward rates (centre panel) and nominal returns (right panel). We used the parameters’
values of Table 4 and Table 5 for the long memory and short memory case respectively.
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Fig. 10. We report the term structure of the average inflation risk premia IPn,t:

IPn,t =
1

n
covt[mt+1,t+n � ⇡t+1,t+n, ⇡t+1,t+n],

obtained as the di↵erence

IPn,t = r$n,t � cn � rn,t �
1

n
EIn,t

and EIn,t = Et(log(⇧t+n/⇧t)) defines the n-period expected inflation and cn is the Jensen’s
inequality term.
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Panel A: Yields and inflation

Maturity 1 M 3 M 1 Y 3 Y 5 Y 10 Y 15 Y 20 Y 30 Y inflation

Mean 3.7005 3.9914 4.3444 4.8850 5.2703 5.9674 6.2928 6.4018 6.3122 3.6323

Std Dev 2.1791 2.3479 2.3912 2.2554 2.0673 1.7673 1.6356 1.5933 1.6233 4.2072

Skew -0.1705 -0.1805 -0.2042 -0.2248 -0.1230 0.1071 0.1815 0.1687 0.1306 0.5403

Ex. Kurtosis 2.1902 2.1421 2.1106 2.1679 2.1431 2.0616 2.0349 1.9921 1.9392 4.0762

Min 0.0024 0.0024 0.1423 0.3401 0.8605 1.9843 2.6337 2.9225 2.5021 -21.7214

Max 8.6712 9.1104 9.6212 9.4564 9.2867 9.6419 9.8495 9.9562 10.1602 23.3429

Panel B: Forward rates

Mean 3.7005 4.1706 4.6714 5.5403 6.1731 6.9183 6.8874 6.5497 5.7320

Std Dev 2.1791 2.4416 2.4297 2.0420 1.7523 1.4532 1.4574 1.5948 1.9740

Skew -0.1705 -0.1675 -0.2511 -0.1030 0.1623 0.3488 0.1547 -0.0119 0.2183

Ex. Kurtosis 2.1902 2.1757 2.1240 2.1204 2.0284 2.1558 2.0374 2.1781 2.3069

Min 0.0024 -0.1416 0.0874 0.9996 2.0859 3.7555 3.4967 2.1183 0.5501

Max 8.6712 10.1328 9.7205 9.5418 9.8925 10.4042 10.5341 10.6395 10.6858

Panel C: 1-month bond returns

Mean 3.7124 4.2295 4.9482 6.4328 7.6614 9.7314 10.9506 11.9248 13.9592

Std Dev 2.1724 2.4818 3.8183 11.2270 18.6264 35.1497 50.7653 64.8588 99.5842

Skew -0.1732 -0.1230 0.4987 -0.0293 -0.1537 0.0347 0.1477 0.2601 0.4739

Ex. Kurtosis 2.2007 2.2141 3.0876 2.9654 3.0657 4.3073 5.1281 5.5565 5.5001

Min 0.0048 -0.0948 -3.1406 -26.7256 -47.6655 -116.7367 -174.2359 -218.2020 -299.6785

Max 8.6712 10.1616 17.4992 36.3941 60.5417 149.6504 232.1160 321.8883 495.4985

Table 1: Summary statistics for zero coupon monthly yields and inflation. The 1 and 3
month yields come from the Fama’s Treasury Bills Term Structure Files, and the 1, 3, and
5 year yields come from the Fama-Bliss Discount Bond Files, 1952:06 - 2011:12, available
from CRSP. The 10 to 30 year yields are obtained from Gurkaynak et al (2007), 1986:01-
2011:12, available from the website of the Federal Reserve Board. All yields are continuously
compounded. Inflation, 1947:01-2011:12, is calculated from the CPI All Urban Consumers.
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1 M 3 M 1 Y 3 Y 5 Y 10 Y 15 Y 20 Y 30 Y inflation
d

std.err.
0.1680
0.1297

0.2754
0.0613

0.2231
0.0645

0.1728
0.0682

0.1545
0.0786

0.1048
0.0924

0.1094
0.1026

0.1291
0.0928

0.1633
0.0779

0.3474
0.0357

Table 3: Estimates of the long memory parameter d from the ARFIMA(1, d, 1) model:

(1�  L)(1� L)dwt = (1 + ✓L)✏t

where the observable wt is equal to r$n,t for the above maturities and to inflation ⇡t. We
use the Chan and Palma (1998) maximum likelihood estimator (see Appendix D). Standard
errors are reported in small font.
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 x ✓x dx  z ✓z dz
0.8992
0.0010

0.5877
0.0136

0.2862
0.0032

0.8698
0.0014

0.9857
0.0156

0.1878
0.0021

µr �x �z �⇡
0.0059
0.0016

0.0055
0.0001

0.0003
0.0001

0.0313
0.0013

�x0 �z0 �zx �z
⇥1000 ⇥100

�0.0295
0.0008

�2.8880
0.0414

0.0018
0.0001

�0.0192
0.0006

�x1 �x2 �z1 �z2
⇥100000

0.0008
0.0001

0.2673
0.0019

�0.0291
0.0001

�2.5723
0.0463

�1 �3 �12 �36 �60
0.0062
0.0001

0.0038
0.0002

0.0030
0.0002

0.0007
0.0002

0.0009
0.0002

�120 �180 �240 �360
0.0007
0.0003

0.0004
0.0001

0.0011
0.0004

0.0033
0.0001

Table 4: We report the estimates of the long memory model with two factors, with measure-
ment equations
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where eA$
n, eB$

x,n, eB$
z,n are defined in Theorem 4.2, and transition equations

Cx,t+1 = FCxt + hx"x,t+1,Cz,t+1 = FCzt + hz("z,t+1 + �zx"x,t+1),

with ✏x,t ⇠ NID(0, �2
x), ✏z,t ⇠ NID(0, �2

z), ✏⇡,t ⇠ NID(0, �2
⇡) mutally independent and where

F and hx,hz are defined in (28) and (30) respectively. The factors xt = G0Cxt, zt = G0Czt,
with G = (1, 0, 0...)0, are ARFIMA(1, d, 1)

(1�  zL)(1� L)dzzt = (1 + ✓zL)✏z,t, (1�  xL)(1� L)dxxt = (1 + ✓xL)✏x,t.

The innovations to yields satisfy ✏n,t = (eB$0
x,nhx+�zxeB$0

z,nhz)"x,t+ eB$0
z,nhz"z,t+⌫n,t, with ⌫n,t ⇠

NID(0, �2
n). Robust standard errors are reported in small font. The model is estimated by

the approximate maximum likelihood estimator proposed by Chan and Palma (1998) with
the truncation lag set to 60. See Appendix D. The sample period is 1986:01 to 2011:12.
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 x ✓x dx  z ✓z dz
0.9759
0.0037

0.3026
0.0427

� 0.9637
0.0021

0.8264
0.0282

�
µr �x �z �⇡

0.0206
0.0013

0.0018
0.0002

0.0008
0.0001

0.0324
0.0017

�x0 �z0 �zx �z
⇥1000 ⇥100

�0.1830
0.0010

�0.3329
0.0424

�0.0034
0.0001

0.0306
0.0048

�x1 �x2 �z1 �z2
⇥100000

�0.0399
0.0001

�0.1136
0.0009

�0.0121
0.0011

�0.2555
0.0142

�1 �3 �12 �36 �60
0.0068
0.0004

0.0042
0.0003

0.0027
0.0002

0.0007
0.0004

0.0007
0.0001

�120 �180 �240 �360
0.0010
0.0016

0.0009
0.0014

0.0015
0.0010

0.0046
0.0011

Table 5: We report the estimates of the short memory model with two factors, with mea-
surement equations
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where eA$
n, eB$

x,n, eB$
z,n are defined in Theorem 4.2, and transition equations

Cx,t+1 = FCxt + hx"x,t+1,Cz,t+1 = FCzt + hz("z,t+1 + �zx"x,t+1),

with ✏x,t ⇠ NID(0, �2
x), ✏z,t ⇠ NID(0, �2

z), ✏⇡,t ⇠ NID(0, �2
⇡) mutally independent and where

F and hx,hz are defined in (28) and (30) respectively. The factors xt = G0Cxt, zt = G0Czt,
with G = (1, 0, 0...)0, are ARMA(1, 1)

(1�  xL)xt = (1 + ✓xL)✏x,t, (1�  zL)zt = (1 + ✓zL)✏z,t.

The innovations to yields satisfy ✏n,t = (eB$0
x,nhx+�zxeB$0

z,nhz)"x,t+ eB$0
z,nhz"z,t+⌫n,t, with ⌫n,t ⇠

NID(0, �2
n). Robust standard errors are reported in small font. The model is estimated by

the approximate maximum likelihood estimator proposed by Chan and Palma (1998) with
the truncation lag set to 60. See Appendix D. The sample period is 1986:01 to 2011:12.
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dependent variable
PC1 PC2 PC3 PC4

regressors
x 0.9617 0.0263 0.0024 0.0001
z 0.9468 0.0446 0.0001 0.0003

x and z 0.9920 0.9243 0.0112 0.0010

Table 6: We report the regression R2 from projecting each of the first four principal compo-
nents, extracted from the set of nominal yields in our sample, on the filtered factor xt (first
row), on the filtered factor zt (second row) and on both xt, zt (third row). The sample period
is 1986:01 to 2011:12.
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Panel A: value of the log-likelihood function:
model LM SM
log � likelihood 13549 13323

Panel B: likelihood ratio test:
LR

p�value
252
0

Table 8: Panel A reports the log-likelihood value corresponding to the estimated long memory
(LM) and short memory (SM) models, with two latent factors. Panel B reports the likelihood
ratio test of the null hypothesis: H0 dx = dz = 0, viz. that the SM is the correct model. The
p-value is reported in small font. The test is distributed like a chi-square with two degrees
of freedom under H0.

yield 1 M 3 M 1 Y 3 Y 5 Y
forecast horizon Panel A � LM specification

1 M 24.66 23.56 37.79 57.92 33.10
3 M 55.65 59.50 76.93 91.60 62.97
6 M 101.91 106.36 121.07 129.84 94.83
1 Y 180.29 183.80 188.78 176.82 127.06

Panel B � SM specification
1 M 26.30 25.45 37.12 48.88 34.07
3 M 61.91 64.98 75.41 86.01 67.49
6 M 113.34 116.41 124.34 129.53 105.89
1 Y 195.70 197.37 195.82 187.22 151.71

Table 9: The table reports the root mean square error (RMSE) of the the in-sample forecasts
of the long memory (LM) and short memory (SM) models, respectively in panel A and B.
The RMSE statistics are reported for di↵erent forecasting horizons: 1, 3, 6 and 12 months.
For calculation of the forecast errors we use the last 10 years of the sample. The forecasts are
in-sample because are based on the parameter estimates obtained from the full sample. We
start the forecasts in 2000:12. We obtain 120 forecasts for 1 month horizon, 118 forecasts for
3 month horizon, 115 forecasts for 6 month horizon, and 109 forecasts for 12 month horizon.
The forecasts are obtained by with the Kalman filter. The smallest RMSE among the LM
and SM models is highlighted in bold. The RMSE is reported in percent.
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yield 1 M 3 M 1 Y 3 Y 5 Y
forecast horizon Panel A: LM specification

1 M 30.88 24.03 47.51 80.02 32.59
3 M 54.05 60.10 88.37 111.76 61.11
6 M 106.00 113.60 139.57 149.62 90.38
1 Y 197.15 202.99 215.11 196.43 118.26

Panel B: SM specification
1 M 28.57 24.57 34.95 51.75 36.46
3 M 62.41 67.29 82.13 97.06 77.17
6 M 124.09 129.55 142.73 152.02 126.61
1 Y 223.41 226.94 230.98 227.21 190.72

Panel C: AP specification
1 M 51.37 41.69 29.91 40.86 32.00
3 M 105.41 89.21 68.75 74.94 59.10
6 M 149.05 133.08 110.92 105.11 87.22
1 Y 201.37 192.50 167.61 143.34 109.90

Panel D: ABW specification
1 M 33.85 45.35 85.32 72.41 30.92
3 M 68.46 82.32 111.57 90.61 54.60
6 M 111.58 121.53 137.27 107.98 74.96
1 Y 162.07 165.73 161.18 117.75 88.08

Panel E: DL specification
1 M 35.43 28.19 24.88 35.68 32.76
3 M 63.18 59.98 58.78 70.22 62.24
6 M 100.79 99.73 101.80 108.33 94.04
1 Y 158.57 159.50 158.36 148.88 118.49

Table 10: The table reports the root mean square error (RMSE) of the out-of-sample forecasts
of the long memory (LM) model and of the short memory (SM) models, respectively in panel
A and B. Panels C,D,E reports the RMSE corresponding to the Ang and Piazzesi (2003)
(AP), to the Ang et al (2008) (ABW) and to the Diebold and Li (2006) (DL) models.
The out-of-sample forecast errors are calculated with a rolling estimation widow of 607
observations, based on the last 5 years of the sample. In the first step we estimate the model
using the period 1952:06 to 2000:12, and using the last recursion of the Kalman filter to
make predictions for 4 di↵erent horizons. In the second step we estimate the model using
the period 1952:07 to 2001:01. We repeat the procedure 120 times. We obtain 120 forecasts
for 1 month horizon, 118 forecasts for 3 month horizon, 115 forecasts for 6 month horizon,
and 109 forecasts for 12 month horizon. The statistics are reported in percent for di↵erent
forecasting horizons: 1, 3, 6 and 12 months.
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